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Abstract— Prediction of large-scale water-related natural
disasters such as droughts, floods, wildfires, landslides, and
dust outbreaks can benefit from the high spatial resolution
soil moisture (SM) data of satellite and modeled products
because antecedent SM conditions in the topsoil layer govern
the partitioning of precipitation into infiltration and runoff.
SM data retrieved from Soil Moisture Active Passive (SMAP)
have proved to be an effective method of monitoring SM content
at different spatial resolutions: 1) radiometer-based product
gridded at 36 km; 2) radiometer-only enhanced posting product
gridded at 9 km; and 3) SMAP/Sentinel-1A/B products at
3 and 1 km. In this article, we focused on 9-, 3-, and 1-km SM
products: three products were validated against in situ data using
conventional and triple collocation analysis (TCA) statistics and
were then merged with a Noah-Multiparameterization version-
3.6 (NoahMP36) land surface model (LSM). An exponential
filter and a cumulative density function (CDF) were applied for
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further evaluation of the three SM products, and the maximize-R
method was applied to combine SMAP and NoahMP36 SM data.
CDF-matched 9-, 3-, and 1-km SMAP SM data showed reliable
performance: R and ubRMSD values of the CDF-matched SMAP
products were 0.658, 0.626, and 0.570 and 0.049, 0.053, and
0.055 m3/m3, respectively. When SMAP and NoahMP36 were
combined, the R-values for the 9-, 3-, and 1-km SMAP SM data
were greatly improved: R-values were 0.825, 0.804, and 0.795,
and ubRMSDs were 0.034, 0.036, and 0.037 m3/m3, respectively.
These results indicate the potential uses of SMAP/Sentinel data
for improving regional-scale SM estimates and for creating
further applications of LSMs with improved accuracy.

Index Terms— Data combination, data validation, land surface
model, microwave remote sensing, Sentinel-1A/B, soil moisture
(SM), Soil Moisture Active Passive (SMAP).

I. INTRODUCTION

SOIL moisture (SM) is a key indicator of both landscape
hydrologic and biogeochemical processes [1]–[3]. The

amount of water stored in the topsoil layer is generally
determined through interaction among hydrologic components
precipitation, evapotranspiration (ET), surface runoff, percola-
tion, groundwater recharge, and plant uptake [1], along with
the effect of soil physical characteristics (e.g., hydraulic con-
ductivity). Aside from hydrology, SM also allows estimation of
biogeochemical fluxes and storage (e.g., nutrient reduction and
transport and carbon storage) due to linkage of these processes
to SM [2]. SM is also used to predict the effect of human activ-
ities on agriculture management because soil–water deficiency
is a driving factor that determines irrigation practices to curb
crop water stress [4]. Hence, spatial and temporal variations in
SM offer important signals for understanding hydrologic and
biogeochemical processes and patterns.

Consistent and routine monitoring of every location on
Earth can be accomplished with satellite remote sensing [5].
It is a known fact that SM contents retrieved from satellite
microwave instruments provide an effective way to monitor
SM variability with near-daily temporal resolution [6]–[8],
and various methods for estimating SM data from satellite
microwave instruments have been proposed [9], including
the Advanced Microwave Scanning Radiometer (AMSR-E),
the Advanced Scatterometer (ASCAT), the Soil Moisture and
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Ocean Salinity (SMOS), the Advanced Microwave Scanning
Radiometer 2 (AMSR2), and the Soil Moisture Active Pas-
sive (SMAP) [10]–[14]. Researchers have also experimented
with applying Global Navigation Satellite System (GNSS)
signals to determine surface SM. This passive bistatic radar
technique shows the possibility that reflected GNSS signals
from Earth’s surface might be used to describe Earth’s surface
properties [15]. It has been proven that satellite-based SM esti-
mates are capable of providing regional- and global-scale SM
estimates for use in modeling the interactions between land
and atmosphere, helping us to provide high-accuracy, near-
real-time climate forecasting [16], [17]. SM estimates from
remote sensing technique are also recognized as a promising
means of providing large-scale SM information because the
spatial range has fewer constraints [10]. Furthermore, various
studies using satellite SM data have consistently progressed
in terms of applications such as drought monitoring [18],
irrigation detection [4], [19], runoff modeling [20], flood
forecasting [21], and many other areas [22].

However, most microwave-band radiometry-based SM
retrievals from space provide SM estimates at 10 to 36 km
resolution globally [8], [10]: the spatial resolution of SM
estimates from sun-synchronous satellite microwave systems
are restricted by the diameter required by the antenna which
produces the long wavelengths (i.e., L-, C-, and X-bands)
necessary in estimating SM data. Despite the high sensitivity
of microwave radiometers to SM variability, their spatial
resolution remains coarser than that of active microwave and
optical systems. However, high-resolution surface SM contents
derived from various satellite sensors are required for a wide
range of operational applications, including irrigation manage-
ment, agricultural activities, and hydrological modeling.

Researchers have proposed various methods of improv-
ing the spatial resolution of microwave-based SM estimates
through synergistic use of other satellite and model prod-
ucts [8], [23]–[29]. These previous studies developed disaggre-
gation methods and compared the performances of downscaled
SM products retrieved from different microwave sensors
such as AMSR2 onboard GCOM-W1, Microwave Imag-
ing Radiometer using Aperture Synthesis (MIRAS) onboard
SMOS, and the radiometer onboard SMAP. SM estimates
(or bright temperature values) from these sensors are then
disaggregated into finer spatial resolutions using auxiliary
information obtained from Moderate Resolution Imaging
Spectroradiometer (MODIS) onboard the Earth Observing
System (EOS) Terra and Aqua platforms, Synthetic-Aperture
Radar (SAR) onboard Sentinel-1, Landsat satellites, and so on.
In particular, NASA’s SMAP mission has been implemented to
provide not only the 36- and 9-km grid sizes of SM data from
L-band radiometer brightness temperature (TB) but also the
3- and 1-km SM data from a combination of SMAP and
Sentinel-1A/B observations. These gridded data of SM with
3 and 1 km were produced by combining the Sentinel-1A/B
C-band radar backscatter (σ 0) and SMAP radiometer TB obser-
vations. This newly available SM product with 1-km resolution
from SMAP and Sentinel-1A/B observations would be highly
beneficial to operational applications such as water resource
and irrigation management, hydrological modeling, watershed

management, and many other surface processes [30]. However,
before practical use of these high-resolution SMAP data sets
can begin, it will be necessary to validate the data [31].
These downscaled products have yet to be thoroughly vali-
dated against ground observations. They have not been fully
investigated with regard to their effectiveness in improving SM
data quality when used with modeled SM products.

The objective of this article is to explore the accuracy
of three SM data sets from SMAP—9, 3, and 1 km—and
the appropriateness of these high spatial resolution SM data
for synergistic use with modeled SM products. We validated
newly released SMAP Enhanced (9 km) and SMAP/Sentinel-
1 (3 and 1 km) products against ground-based measurements
located in an agricultural landscape within the Mid-Atlantic
Coastal Plain, USA. By doing so, we provide new insights into
the applicability of high-resolution SM products from SMAP/
Sentinel-1A/B observations. Specifically, we have highlighted
the advantages and limitations of the newly available high
spatial resolution SMAP products for various hydrological and
agricultural applications, thus helping watershed scientists and
conservationists to efficiently monitor hydrologic processes
and develop water management plans.

II. STUDY AREA

The study domain was the upper portion of the Choptank
River watershed (CRW, approximately 1,756 km2) along the
Eastern shore of Maryland within the Mid-Atlantic Coastal
Plain, USA (Fig. 1). The CRW is recognized as an “impaired”
water body under Section 303 (d) of the Clean Water Act
owing to excessive loadings of sediment and nutrients from
croplands [32]. As a benchmark watershed, the CRW has been
extensively monitored and studied by the USDA Agricultural
Research Service (ARS) in the Conservation Effects Assess-
ment Project (CEAP) [33] as well as within the Long-term
Agroecosystem Research (LTAR) Network [34]. This area is
characterized by low topographic relief and a temperate, humid
climate with an annual average precipitation of 1,200 mm [35].
Precipitation is fairly uniform over the course of the year,
while ET differs seasonally (e.g., low and high during winter
and summer seasons, respectively), leading to a high season-
ality of overall water balance [36]. According to the Multi-
Resolution Land Characteristics (MRLC) Consortium National
Land Cover Database (NLCD) for the year 2016, the land use
of the study domain is dominated by croplands used mainly
for corn and soybeans, followed by forest, developed lands,
pasture, and open water (Fig. 1 and Table VIII in Appendix A).
The U.S. Soil Survey Geographical Database (SSURGO)
indicates a large portion (60%) of soils within the domain is
well- or moderately well-drained, and the remainder is mod-
erately poorly drained (Table VIII and Fig. 7 in Appendix A).

III. DATA DESCRIPTION

A. SMAP and SMAP/Sentinel-1A/B Soil Moisture Products

The 3- and 1-km spatial resolutions of SMAP/Sentinel-
1A/B SM data were derived using σ 0 from the Sentinel-1A/B
and TB from the 9-km enhanced radiometer data because
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Fig. 1. Location of the study domain. Note: The 15 NLCD land use classes were aggregated into five classes according to their similarity (Table IX in
Appendix A).

Sentinel C-band SAR observations have much higher res-
olution (∼50 m) than SMAP radiometer observations [37].
Sentinel-1 is a satellite constellation managed by the Euro-
pean Space Agency; composed of a constellation of two
satellites, Sentinel-1A and Sentinel-1B, which share the same
orbital plane. The constellation is in a sun-synchronous, near-
polar orbit with a 12-day repeat cycle, and it completes
175 orbits per cycle [38]. Sentinel-1A/B carries a C-band
SAR instrument (central frequency at 5.405 GHz) which
provides σ 0 data available in all weather conditions, day or
night. The SMAP/Sentinel-1 L2 SM product uses Sentinel-
1A/B C-band SAR σ 0 measurements to disaggregate the
SMAP L-band TB measurements from the ∼9- to 3-km
and 1-km EASE2-grid projection. To reduce the speckle
of ∼50-m resolution of SAR observations and the corre-
sponding swath of up to 400 km, the SAR observations
were aggregated to a resolution of 1 km before disaggre-
gation was performed. For this reason, the finest spatial
resolution of SMAP/Sentinel-1 SM product is 1 km [30].
The L2_SM_SP product, 3- and 1-km SMAP/Sentinel-1 SM
data were generated from the SMAP/Sentinel Active–Passive
algorithm introduced in [39], which was updated based on
a snapshot retrieval approach [40], [41]. In this article,
we obtained SMAP/Sentinel-1 3- and 1-km data through
NSIDC (https://nsidc.org/data/spl2smap_s). Refer to [39] for
further details about SMAP/Sentinel SM product.

This article used the 9-km enhanced SMAP SM (here-
after, SMAP-9 km) and the 3- and 1-km SMAP-Sentinel SM
(hereafter, SMAP/Sentinel-3 km and SMAP/Sentinel-1 km,
respectively). The temporal resolution of SMAP/Sentinel SM
data depends greatly on the number of C-band SAR acquisi-
tion from Sentinel-1A and -1B because the spatial coverage

and revisit interval of the Sentinel-1A and -1B cannot be
matched to the SMAP observations. Consequently, the tempo-
ral resolution of SMAP/Sentinel SM is about 8 days. In this
article, the temporal coverage was from December 2016 to
October 2018.

B. Land Surface Model

Various land surface models (LSMs), such as Mosaic [42],
Variable Infiltration Capacity (VIC) [43], Catchment
LSM-Fortuna 2.5 (CLSM F2.5) [44], Noah [45], and Noah
with Multiparameterization options (Noah-MP) [46], [47],
have been widely used to predict surface to root-zone
SM [1], [48]–[50]. Among the existing LSMs, in this article,
we used Noah-MP version 3.6 (hereafter, NoahMP36),
implemented in the NASA Land Information System
(LIS) [51], [52], to generate SM outputs similar to previous
research [53]. Compared with previous Noah-3.6 LSMs,
NoahMP36 has been improved in several aspects of
hydrological processes, including snow physics [54], and
warm season processes [53], [55]. Noah-MP LSM uses
multiple options for important land–atmosphere interaction
processes, and it contains a separate vegetation canopy defined
by a canopy top and bottom; crown radius; and leaves with
described dimensions, orientation, density, and radiometric
properties [46]. To precisely estimate surface energy and the
water transfer process, the canopy uses a two-stream radiation
transfer approach with shading effects [56], [57]. Noah-MP
has also made several improvements in estimating different
hydrological variables, including multilayer snow variables,
surface water infiltration, runoff, vegetation groundwater
transfer, and storage. Refer to [57]–[59] for further detailed
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information. Hourly NoahMP36 surface (0–10 cm soil depth)
SM data (hereafter, SMMOD) with the 9-, 3-, and 1-km
spatial resolution were produced to match the temporal and
spatial resolutions of SMAP or SMAP/Sentinel SM data
sets. NoahMP36 was driven by the North American Land
Data Assimilation System project phase 2 (NLDAS-2) [60]
meteorological forcing data during 2006–2018. We then used
the SM data from 2016 to 2018 which corresponded to the
SMAP and SMAP/Sentinel SM products. These modeled
products were used as one half of the parent data designated
for combination with SMAP or SMAP/Sentinel SM data
(Section IV-E) and one component of the triplet used for the
triple collocation analysis (TCA) (Section IV-C).

C. Ground Observation

In situ SM measurements have served an essential
role in validating modeled and remotely sensed SM
retrievals [61], [62]. The SMAP and SMAP/Sentinel SM
products were validated using hourly SM (m3/m3) measured at
depths of 5 cm below the land surface using the Stevens Water
Hydra Probes SM sensor. Hourly rainfall data were also col-
lected at each station by Texas Electronics 525 tipping bucket
rain gauges [63]. These sensors were located in the vicin-
ity of cropland boundaries in grasslands or short-maintained
lawns (Fig. 1). The seven observation locations, surface SM,
climatic variables (i.e., surface temperature and precipitation),
vegetation, and other land property information are included
in Table I. The majority filter was used to calculate major
land cover types (eighth row in Table I) for different pixel
resolutions.

In this article, soil properties are derived from the USDA
Natural Resources Conservation Service (NRCS) Soil Sur-
vey Geographic Database (SSURGO; https://websoilsurvey.
nrcs.usda.gov/). This database provides nationwide informa-
tion on detailed soil characteristics; thus, it has been widely
used as ancillary data for hydrology [64], ecology [65], and
biogeochemistry [66].

D. Other Data Sets

To further investigate the impact of hydrological variables
on SM estimates from SMAP and SMAP/Sentinel-1A/B,
we used vegetation, precipitation, and land cover properties.
For precipitation, we used the Global Precipitation Measure-
ment (GPM) constellation (Section III-D.2, Fig. 2), the vegeta-
tion index from the MODIS Normalized Difference Vegetation
Index (NDVI) (Section III-D.1, Fig. 2), and the land’s het-
erogeneity indicator from the Gini–Simpson Index calculated
from a land use map from MRLC NLCD (Section III-D.2,
Fig. 2).

1) Normalized Difference Vegetation Index (NDVI): The
NDVI was obtained from the MODIS Aqua satellite
(MYD13A2), which provides global NDVI data every 16 days
as a gridded level-3 product with a spatial resolution of 1 km.
NDVI is the most commonly used vegetation index for analyz-
ing the status of vegetation growth and it represents the vege-
tation density and chlorophyll content of vegetation [67], [68].
MODIS is onboard two NASA satellites Terra and Aqua,

which were launched on December 1999 and May 2002,
respectively. Details of the MODIS land data are available
at the MODIS website (https://modis.gsfc.nasa.gov) [67].

2) Global Precipitation Measurement and Land Cover
Data: Launched on February 20, 2014, by NASA and JAXA,
GPM is an international satellite mission intended to provide
precipitation and snowfall on a global scale every 30 min [69].
There are many products available from the GPM Core
Observatory; of relevance to our present work are those
associated with a high-quality, late-run GPM Core Observa-
tory product used in producing the Integrated Multi-satellitE
Retrievals (IMERG) at a temporal scale of every 30 min with
0.1◦ grid boxes. In this article, we used GPM IMERG Final
precipitation L3 half-hourly data.

The Gini–Simpson Index [70] was calculated using MRLC
NLCD (https://www.mrlc.gov/) to provide information on the
heterogeneity over the study areas. The NLCD provides
national-scale land cover classification with a medium reso-
lution (30 m) for national applications [71]. The latest version
(2016 land cover map) used in this article was developed
to support monitoring land cover change and environmental
models by offering a nationwide consistent multitemporal land
cover and land cover change database [71].

IV. METHODOLOGY AND DATA PREPARATION

Accuracy of the SMAP and SMAP/Sentinel SM data sets
was evaluated against the seven ground observations shown
in Fig. 1 using four statistical indicators (Section IV-A).
To overcome the sensing depth mismatch between satellite
and ground observations, we considered an exponential filter
(Section IV-B). The TCA was adopted to innate errors in
SMAP, SMAP/Sentinel, and observation SM data (Section IV-
C). In addition, a cumulative density function (CDF) matching
method was applied to SMAP-9 km and SMAP/Sentinel-3-
and -1-km data sets (Section IV-D), and then the usability
and effectiveness of downscaled SMAP and SMAP/Sentinel
SM products were examined along with the NoahMP36 SM
data (Section IV-E). Finally, Taylor diagrams were included
to effectively show comparative results of different SM prod-
ucts, including satellite, model, and combined SM data sets
(Section IV-F).

A. Statistic Metrics for the Validation of SM Data

In this article, four conventional statistical indicators were
used including Pearson’s correlation coefficient (hereafter,
R), bias, root-mean-square difference (RMSD), and unbiased
RMSD (ubRMSD) that are calculated using the equations
shown in [72] with p-value less than 0.05. We only considered
data points where all the data, 9-, 3-, and 1-km SM products,
were available simultaneously. Hereafter, we used SMREF for
SM data from in situ (reference SM), SMMOD for SM data
from NoahMP36 data (model-based SM), and SMSAT for
SMAP SM data (satellite-based SM).

B. Exponential Filter

To evaluate SM data from satellites versus in situ, it is
necessary to consider the mismatch of representative depths
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TABLE I

CLIMATIC CHARACTERISTICS AND SOIL PROPERTIES AT THE SEVEN SM MEASUREMENT SITES
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Fig. 2. Maps of (a) average precipitation from GPM, (b) average NDVI from MODIS, and (c) Gini–Simpson index. (Top right) Longitude and latitude zonal
means of each variable, respectively, and the shaded region shows ±1 standard deviation. Red, black, and blue lines in the zonal mean plots in (c) indicate
the average values of Gini–Simpson index for 9, 3, and 1 km, respectively.

of SM data from satellites—the TB and radar backscatter
coefficient values used to retrieve SM data originate from
the topsoil layer that varies from zero to few centimeters
with respect to the surface conditions, while ground-based SM
data are collected from sensors installed at a fixed depth of
5 cm below the surface. An exponential filter can overcome
the depth discrepancy between satellite-based SM data and
ground-based measurements by estimating the average SM
value over a layer in the soil profile. The satellite-based
SM data, after application of the exponential filter, is called
the Soil Water Index (SWI). We calculated the SWI from
SMAP-9 km and SMAP/Sentinel-3- and -1-km data sets (here-
after, SMAP9SWI, SMAP3SWI, and SMAP1SWI, respec-
tively) using the following recursive equation proposed in [73]

SMAPxSWI(tn) = SMAPxSWI(tn−1) + Kn(SMAPxSWI(tn)

−SMAPxSWI(tn−1)) (1)

where SMAPxSWI(tn−1) is the estimated profile of the spatial
resolution of x-km ×x-km SMAP SM at time t (n− 1), and
SMAPxSWI(tn) is the estimated profile x-km ×x-km SMAP
SM at time tn . The recursive form of gain Kn at time tn is
calculated as follows:

Kn = K(n−1)

K(n−1) + e
−

(
tn−t(n−1)

T

) where 0 < K < 1 (2)

where T is the characteristic time length in days. In this article,
we used Topt, which is an optimum T value approach; Topt was
calculated based on the Nash–Sutcliffe score that matches the
profile SM values at each ground observation. To initialize
the exponential filter, SMAPxSWI1 was set to SMAP-9 km(t1)
(x = 9), SMAP/Sentinel-3 km (x = 3), and -1 km (x = 1),
and K 1 was set to 1, following [73].

C. Triple Collocation Analysis

Due to the multiplicative bias between satellites (or mod-
eled) SM and in situ SM data, R and ubRMSE metrics
can be degraded [74]. In this case, R and ubRMSE met-
rics could not characterize the intrinsic errors in the SMAP
and SMAP/Sentinel SM data. Moreover, although the SMREF

values can be regarded as the reference values, they are not
true SM values because they also include random errors and
systematic errors. In this case, triple collocation (TC) metrics
can be used to overcome this limitation because TC-based
R2 assumes independent error. To conduct TCA, we selected
SM products with derivations as different as possible because
similarly derived data sets might have partially correlated
errors. We calculated the TC metric using triplets including
[SMSAT, SMMOD, and SMREF]. An objective comparison of
each product’s error metric can be accomplished by consider-
ing a signal-to-noise ratio (SNR) [75]

SNRSMSAT

= cov(SMSAT, SMMOD) · cov(SMSAT, SMREF)

cov(SMMOD, SMREF) · var(εSAT)
(3)

where SMSAT indicates SM data from SMAP or
SMAP/Sentinel, SMMOD indicates SM data from model,
SMREF indicates SM data from ground observations and
var is variance of the SMSAT error. The TC-based R2

is different from the conventional R-values regarding its
independence [76]. Because of the random errors in the
reference data set, the conventional R-value can become
degraded. The TC-based R2 is calculated as follows:

TC − basedR2 = 1

1 + 1
SNR

. (4)

For further information regarding TCA, refer to [75] and [76].
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D. CDF Matching

The CDF matching method is one of the most effective
methods of removing systematic differences between two
data sets using nonlinear approach [77], [78]. This approach
matches the CDF of one data set (e.g., SMSAT and SMMOD)
to the CDF of the reference data (i.e., in situ SM data):
this method is a widely used data analysis tool using the
corresponding cumulative distributions. Specifically, the CDF
matching method makes it possible to remove the bias
and variance error of SMSAT and SMMOD over the study
areas. However, it is worth noting that CDF matching that
allows researchers to match one set of data to the reference
approach can generate artificial biases; thus, this approach
has been regarded as a suboptimal method of removing the
biases [74], [79], [80]. Even though the CDF matching method
can be suboptimal and provides only approximations, many
previous studies have proven that this method can be used
to intercompare and evaluate the accuracy of the SMMOD

and SMSAT data [80]–[82]. In this article, the CDF match-
ing method was applied to all three SMAP-9 km (hereafter,
SMAP9CDF), SMAP/Sentinel-3 km (hereafter, SMAP3CDF),
and SMAP/Sentinel-1 km (hereafter, SMAP1CDF).

E. Data Combining Two Different Sets of SM Data

One of the main goals of this article was to determine
whether the SMAP-9 and two SMAP/Sentinel-1 SM (3 and
1 km) products contribute to improving the accuracy of the
modeled SM data sets. If the SMAP data sets are capable of
improving the modeled SM data, this would add great value
to the use of modeled SM data in many applications. We com-
bined three different NoahMP36 SM data products—9 km ×
9 km, 3 km × 3 km, and 1 km × 1 km—using SMAP data hav-
ing similar resolutions to modeled SM data from SMAP-9 km,
SMAP/Sentienl-3 km, and -1 km. The final products are
9 km × 9 km spatial resolution enhanced data by
NoahMP36 + SMAP (hereafter, NS9), 3 km × 3 km spatial
resolution data by NoahMP36 + SMAP/Sentinel-1 (here-
after, NS3), and 1 km × 1 km spatial resolution data by
NoahMP36 + SMAP/Sentinel (hereafter, NS1).

To combine the two data sets, we used the maximize-R
method, which is capable of improving the temporal R-values
between combined and reference data sets. This method was
proposed by Kim et al. [83], who demonstrated that the
maximize-R method is a sound method of improving the tem-
poral R-value of certain products with respect to the reference
values. Several studies have shown that the combined data pro-
duced by the maximize-R method are generally superior to the
individual products of various hydrological variables, includ-
ing SM and ET, obtained from satellite observations [84], [85].

The combined SM data (i.e., NS9, NS3, and NS1) were cal-
culated by applying a weighting factor (w) with a normalized

range of 0–1 as follows:
SMNSx = w × SMMOD+(1 − w) × SMSAT (x = 9, 3, or 1)

(5)

where SMNSx represents the combined SM data having a
spatial resolution of x (e.g., 9, 3, or 1 km), SMMOD represents
the NoahMP36 SM data having an x-km resolution, and
SMSAT represents the SMAP-9 km (x = 9) or SMAP/Sentinel-
x (x = 3 or 1) km SM data. This combination process was
performed for a given observation point where both parent
products were available. If the R-value of the combined
product and ground observation at a given location was less
than the R-value of a single parent product and the ground
observation, then the parent product (i.e., the original model
or satellite data) with the higher R-value data was selected
for the final product. The R-value between SMNSx and ground
observations (SMREF) can be expressed as a function of w

R = f (w) = E
[(

SMNSx − μSMNSx

)(
SMREF − μSMREF

)]

σSMNSx σSMREF

(6)

where μ is the mean of the combined and reference value
of SMNSx or SMREF, and σ is the standard deviation of
SMNSx or SMREF. Prior to combining SMSAT and SMMOD

using (9), the systematic difference between the SMREF and
each parent product (i.e., SMSAT and SMMOD) was removed
using the equation proposed in [86]: normalizing each parent
product against SMREF. The SM (SMNORM) data normalized
against the reference product was calculated from the follow-
ing equation:
SMNORM = (

SMSAT(or MOD) − μSMSAT(or MOD)

)

× σSMREF

σSMSAT(or MOD)

+ μSMREF (7)

where μ is the mean of modeled, satellite, or in situ SM data,
and σ is the standard deviation of modeled, satellite, or in situ
SM data. With normalized modeled or satellite data sets, (6)
was differentiated in terms of w to calculate the w value that
creates the maximum R-value (correlation coefficient) between
SMNSx and SMREF. The w value was calculated as (8), shown
at the bottom of this page, where RXY is the R-value between
the data sets of X and Y . In addition, a numerical method
was implemented if either parent product showed a negative
R-value, as explained in [84].

F. Taylor Diagram

A Taylor diagram was designed to represent multiple sta-
tistics to compare different sets of data against the reference
SM data (e.g., in situ data) on 2-D plots [87]. In this article,
we calculated a normalized standard deviation (SDV): SDV
indicates the ratio of SM from satellite or modeled data
to ground measurement standard deviations. In the Taylor
diagram, the SDV, R-value, and RMSD are demonstrated

w = RSMsat ·SMref − RSMsat ·SMmod × RSMmod·SMref

RSMmod ·SMref − RSMsat ·SMmod × RSMsat ·SMref + RSMsat ·SMref − RSMsat ·SMmod × RSMmod ·SMref

(8)
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Fig. 3. Maps of average SM from (a) SMAP-9 km, (b) SMAP/Sentinel-3 km, and (c) SMAP/Sentinel-1 km. Map (d) shows the RMSD of the SMAP-9-km
SM calculated using the weighted average of in situ SM data. The top and right panels indicate the longitude and latitude zonal means of SM for (a)–(c),
and RMSD for (d), and the shaded region shows ±1 standard deviation.

simultaneously: the R-values involving ground measurements
are shown as an angle in the polar plot, the SDV values are
illustrated with radial distance, and the ground measurement
statistics are shown as a point on the x-axis at R-value = 1
and SDV = 1. The SDV values were computed as follows:

SDV = σSMmod(or sat or NSx)

σSMref

. (9)

V. RESULTS AND DISCUSSION

A. Spatial Distribution of SM From SMAP and
SMAP/Sentinel

The averaged SM distributions of SMAP-9 km,
SMAP/Sentinel-3 km, and -1 km are shown in Fig. 3(a)–(c).
The overall spatial variations in the 3- and 1-km SMAP/
Sentinel SM data showed similar spatial patterns to those
of the SMAP-9 km data, but with more finely distributed

SM characteristics. Approximately, 20 pixels were obtained
over the study areas from the SMAP-9 km data, and
154 and 1,230 pixels were retrieved from the 3- and 1-km
SMAP/Sentinel SM data, respectively. From the SMAP-9 km
data [Fig. 3(a)], the diagonal gradient of SM from northwest
to southeast (more longitudinal gradient than latitudinal
gradient from the zonal mean plot shown on the top right of
each product’s average SM map) from westward to eastward
is remarkable—from west to east, the topsoil tends to be drier.
As the spatial resolution improves, the diagonal gradient of the
SM becomes finer and noticeable. The average precipitation
map from the GPM constellation satellite [Fig. 2(a)] suggests
that the study area contains slightly different meteorological
effects that cause different amounts of rainfall: the western
part of the study area receives slightly higher amounts of
precipitation than the eastern part of the study area. The
general movement of storms in the temperate latitude is from
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west to east, and the wind flow from the northwest prevails
in MD, USA [88]. This climatic condition leads to the spatial
gradient of the precipitation, and the SM data from SMAP
are consistent with precipitation patterns. The vegetation
matter indicated by NDVI was also investigated because
vegetation greatly impacts SM retrievals from space. The
results indicate that the study area is not densely vegetated
enough to cause such an obvious diagonal SM gradient as
that shown in Fig. 2(b). In Fig. 2(b), the average values of
NDVI (1 km × 1 km) and the longitudinal and latitudinal
average NDVI values are shown on the top left side; these
values range from 0.35 to 0.7.

Land use of the study area is very homogeneous, and
the land is classified mostly as croplands (Fig. 1). From
these results, and the fact that our study area is very
flat [35], we concluded that over the study area, SMAP and
SMAP/Sentinel data can well represent the spatial patterns of
SM values. However, it is worth noting that the SM values in
the western part of the 9-km SMAP data seem too high when
compared with the values from the eastern side of the study
areas. One plausible theory for the high SM gradient pattern
is a relationship between water bodies and TB observations.
As shown in Fig. 1, the western part of the study region lies
adjacent to the Chesapeake Bay with an irregular coastline.
The radiometer retrievals from the SMAP scan crossing the
coastline could cause the change which is evident in the third
Stokes parameter shown in [89]. This spike correlates closely
to the area of high contrast between TB of land and ocean at the
coastline [89]; this may be an anomaly which contributes to the
overestimation of SM. To analyze the spatial error patterns of
the SMAP-9 km SM data, we calculated the RMSD values for
each 9-km SMAP pixel using the weighted-average in situ data
similar to [31]. We used a Voronoi diagram for weighting the
in situ measurement in a manner similar to [31]. This diagram
was selected by SMAP to find the weighting of the in situ
observations. The Voronoi diagram, also known as a Dirichlet
tessellation, is a partition of a plane into areas with respect to
the distance of a given set of objects (e.g., SM in situ points)
to each other within a bounded area. For further details about
this diagram, refer to [90] and [91]. These up-scaled in situ SM
data were then used to calculate the RMSD value for the 9-km
SMAP data where in situ SM data do not exist. In Fig. 3(d),
the result showed that pixels in the first and second columns of
the SMAP-9 km data have a higher RMSD than other pixels.

However, the retrieval information in the retrieval quality
flag indicates low data quality (i.e., retrieval_qaul_flag is not 0)
for the first column only.

The Gini–Simpson index (i.e., the indication of heterogene-
ity) was also investigated because the heterogeneity of the
surface could affect the SM data quality. The map of the Gini–
Simpson index is shown in Fig. 2(c) (1-km EASE2 grid). The
longitudinal and latitudinal average heterogeneity of the study
area is shown on the top left side of Fig. 2(c). Differently
colored lines and shaded areas (i.e., red and red-shaded
areas, blue and blue-shaded areas, and black and gray-shaded
lines) indicate the average Gini–Simpson index of SMAP and
SMAP/Sentinel SM products having pixel sizes of 9, 3, and
1 km. The Gini–Simpson index values range from 0.2 to 0.7.

Fig. 4. Time series of SM from (a) 9-km SM products of original data (red),
SWI (blue), and CDF SM (green), compared with in situ SM data. (b) and
(c) Same information as (a) but for the SMAP/Sentinel-3- and 1-km SM data,
respectively.

Over the study areas, higher spatial resolutions show slightly
lower heterogeneity, but the Gini–Simpson indices for 9, 3, and
1 km do not show significantly different values because our
study area consists mostly of cultivated cropland. It is worth
noting that the more homogeneous the area, the more stable
the SM retrieval. In addition, the higher the spatial resolution
data, the higher the chance of a high fraction of water bodies
in a given pixel. The pixels closest to our ground observations
include barely any water bodies, as shown in Table I, row 8.
This result indicates that the SMAP or SMAP/Sentinel SM
data validated against in situ SM data (Section V-B) were
not affected by water bodies that could cause errors in SM
retrievals.

B. Accuracy Assessment of SMAP-9 Km and
SMAP/Sentinel-3- and -1-km SM Data

The time series of SM estimates from SMAP-9 km,
SMAP/Sentinel-3 km, and -1 km that include ground
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TABLE II

VALIDATION RESULTS OF R , BIAS, AND UBRSMD VALUES FOR THE 9-km, 3-km, AND 1-km SM DATA
FROM SMAP AND SMAP/SENTINEL

observation #1 are shown in Fig. 4(a)–(c), respectively; and the
results of the statistical metrics of R-value, bias, and ubRMSD
are included in Table II. The data from the original SMAP,
SMAPSWI, and SMAPCDF for 9, 3, and 1 km are illustrated
in Fig. 4. The time series results from the other observations
are included in Fig. 8 in Appendix B. The most distinctive
feature in SMAP/Sentinel-1A/B is the amount of data obtained
during the study period. The SMAP-9 km SM data originally
retrieved from the TB values do not depend on the C-band
SAR swath patterns, so it has the same spatial resolution
as the SMAP-9 km SM data. Although the fine-scale 3- and
1-km SMAP/Sentinel SM data showed the potential to provide
fine-resolution SM estimates by combining TB from the SMAP
radiometer and σ 0 from the Sentinel-1A/B C-band radar
observations, that capability is limited due to low temporal and
spatial coverage. As mentioned earlier, the temporal resolution
of the SMAP/Sentinel-3- and -1-km products depends on
the number of C-band SAR acquisitions from Sentinel-1A/B.
The primary causes of the low spatial coverage and temporal
resolutions are the relatively narrow swath of Sentinel-1A/B
radar and the satellites’ sun-synchronous orbit.

Specifically, the Sentinel-1 constellation’s revisiting cycle of
individual C-band SAR swath is approximately 12 days, and
the revisiting cycle of a consecutive swath is approximately
6 days. The revisiting cycle of Sentinel-1 constellation over
our study area produced pixels that varied from 6 to 14 days,
while SMAP-9 km had a revisiting time of 1–2 days.

The median R-values for all networks were 0.623,
0.608, and 0.522 for SMAP-9 km, SMAP/Sentinel-3-km,
and SMAP/Sentinel-1-km, respectively (R-value column in
Table II). The median bias values were (0.064, 0.086,
and 0.088) m3/m3, and the median ubRMSD values
were (0.057, 0.061, and 0.068) m3/m3 for SMAP-9 km,
SMAP/Sentiel-3 km, and SMAP/Sentinel-1 km, respectively.
In terms of R-values, SMAP-9 km showed slightly bet-
ter performance than the other products. In addition,
the SMAP/Sentinel-3-km data had higher R-values than

TABLE III

TCA RESULTS OF TC-BASED R-VALUES FOR THE 9-km, 3-km, AND

1-km SM DATA FROM SMAP AND SMAP/SENTINEL TC-BASED
R FOR SMAP/SENTINEL SM DATA

SMAP/Sentinel-1-km for all observations. The TC-based R-
values showed similar results; for SMAP-9 km data, the TC-
based R-values showed better performance than the other two
products—the medians of the TC-based R-values were 0.722,
0.636, and 0.610 for SMAP-9 km, SMAP/Sentinel-3 km,
and SMAP/Sentinel-1 km, respectively (Table III). The TC
metrics for observation #2 with 1 km and observations #4 and
#6 with 3-km and 1-km SMAP/Sentinel SM data could not
be calculated due to the low number of data sets. Specifically,
the number of data points for observations #2, #4, and #6 is
53, 48, and 53, respectively—numbers that are high enough
for conventional metrics calculation. However, they are not a
sufficient number for TCA for certain triplets. If the sample
size is too small, it causes the estimated covariance matrix to
be too noisy [76].

In terms of the bias of SMAP-9 km, SMAP/Sentinel-3 km,
and -1 km (bias column in Table II), all SM products showed
a wet bias. As we discussed in Section V-A, the coastal areas
seem to contribute to the overestimation of SMAP SM data.
It seems that the wet bias, which was related to the
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TABLE IV

VALIDATION RESULTS OF R , BIAS, AND UBRSMD VALUES FOR THE SMAP9SWI, SMAP3SWI, AND SMAP1SWI DATA

36-km resolution of SMAP SM data, propagated to finer
resolution SM retrievals because the SMAP/Sentinel-3- and
-1 km data were retrieved based on the TB values obtained
from the passive radiometer onboard the SMAP. In Table X
in Appendix C, it was shown that over the study areas,
the SMAP L3 data (raw SM product) showed wet bias (median
0.143 m3/m3) when compared with seven in situ SM data sets.
This wet bias is in contrast to the often observed dry bias
over cropland [92], [93]. Vegetation canopy is known to be
associated with large errors in retrieved SM, but as shown
in Fig. 2(b), vegetation is not significant in this area. Fur-
thermore, prior studies have demonstrated that SMAP shows
reliable performance over cropland and moderately vegetated
areas with conditions similar to those of the current study
area [84]. One more possible explanation for this wet bias
could be the use of the vegetation water content climatology
and low clay fraction in SMAP baseline algorithm that mis-
matched with the actual values [94].

The median ubRMSD of SMAP-9 km, SMAP/Sentinel-
3 km, and -1 km (ubRMSD column in Table II), did not meet
the SMAP mission’s target accuracy of 0.04 m3/m3. Among
all products, SMAP-9 km showed the lowest ubRMSD. The
pixels closest to ground observation #4 are the only area
where the SMAP/Sentinel-3-km approached the target accu-
racy of ubRMSD. Even if we apply the exponential filter to
overcome the depth discrepancy between satellite-based SM
estimates and ground-observation SM data, it is difficult to
see any improvement in the R-value, bias, or ubRMSD in
SMAP/Sentinel-3- and -1-km products (Table IV). However,
SMAP-9 km showed improvement in the R-value. The
R-value (median) improved from 0.623 to 0.682. However,
the profile SM of SMAP/Sentinel-3- and -1-km data was not
properly estimated due to the low quantity of data, and it
seems the Topt value that was calculated based on the Nash–
Sutcliffe score was improperly optimized (Section IV-B).
Furthermore, the C-band SAR can observe shallower depths
of σ 0 than SMAP’s TB observations, so using SMAP/Sentinel

SM products to define their representative depth can be quite
complicated.

By applying a CDF match to SMAP-9 km, SMAP/Sentinel-
3 km, and -1 km, we were able to remove bias and vari-
ance errors (Table V). Even though the purpose of CDF
matching is to remove systematic difference between two
sets of data based on a nonlinear approach, the median R-
values slightly increased from 0.623, 0.608, and 0.552 to
0.658, 0.626, and 0.570 for SMAP-9 km, SMAP/Sentinel-
3 km, and -1 km, respectively. After implementation of the
CDF match, the ubRMSD values for SMAP9CDF, SMAP3CDF,
and SMAP1CDF were lower than both the original and the
SWI data: the median ubRMSDs were 0.049, 0.053, and
0.055 m3/m3 for SMAP9CDF, SMAP3CDF, and SMAP1CDF,
respectively. The CDF match improved the accuracy of the
SM data for SMAP-9 km, SMAP/Sentinel-3 km, and -1 km
in terms of R-values and ubRMSDs.

In this article, we used seven in situ SM observations to
calculate all conventional metrics (i.e., bias, RMSD, ubRMSD,
and R) and TC-based R. The number of ground observation
used in this article might be insufficient because the validation
of the 3- and 1-km SMAP data was validated against one
in situ station SM data. However, considering that the 9-, 3-,
and 1-km data all point to a wet bias, and that the reason for
the wet bias is clear, we believe the current results provide
insight into the bias of SMAP data in a given area of 1-, 3-,
and 9-km pixels. The p-values for testing the hypothesis also
provided insight into the significance of each of these metrics.
For relative metrics, we believe that conventional R [72] and
TC-based R [95] metrics are better than the standard metric for
SMAP SM data validation—which are pertinent and need to be
reported. Chen et al. [95] also suggested that TC techniques
offer a strategy for characterizing upscaling errors in sparse
ground measurements and removing the impact of such errors
from the evaluation of remotely sensed SM products. This
article concluded that even in cases where ground observations
provide only a single reference point within the footprint,
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TABLE V

VALIDATION RESULTS OF R , BIAS, AND UBRSMD VALUES FOR THE SMAP9CDF, SMAP3CDF, AND SMAP1CDF DATA

unbiased estimates of the correlation between the satellite
product and the true footprint average can be obtained by
applying the TC strategy. It is worth noting that our research
site is one of the few networks near a coastline, providing
a unique perspective on SM estimation from SMAP near
water bodies. Furthermore, our study can have important
implications on use of SMAP on coastal regions.

C. Combination of SMAP and Land Surface
Model SM Products

We assumed that the combination of SMAP Enhanced
and SMAP/Sentinel products would provide complementary
abilities that could increase the R and lower the ubRMSD
and bias values in single SM data. To combine a pair of
satellite (i.e., SMAP-9 km or SMAP/Sentinel) and modeled
SM products (i.e., NoahMP36), the maximize-R approach was
used (Section IV-E).

The time series of SM estimates from SMAP-based,
NoahMP36, and combined SM data from ground observation
#1 are shown in Fig. 5(a)–(c), respectively, and the results of
the statistical metrics of the R-value and ubRMSD for the
comparison of the SMAP-9 km, SMAP/Sentinel-3 km and
1 km, and in-situ SM are included in Tables VI and VII.
The original SMAP-9 km SM is illustrated with red lines;
the 9-km NoahMP36 SM is indicated by blue lines; the com-
bination of 9-km SMAP and NoahMP36 SM data, SMNS9,
is shown as green lines; and the in situ SM data are shown as
black lines [Fig. 5(a)]. Similarly, the spatial resolution of the
3- and 1-km data from SMAP/Sentinel and NoahMP36 and
the combined SM time series for ground observation #1 are
shown in Fig. 5(b) and (c), respectively. The time series
results from the other observations are included in Fig. 9
in Appendix B. After the combination of two SM data
sources, the bias values came close to zero, and the
R-values and ubRMSDs were greatly improved. Figs. 5
and 9 in Appendix B clearly show that the combined SM
(green lines) align well with the in situ SM data (black lines).
Tables VI and VII show the detailed results of the statistical
metrics for the 9-, 3-, and 1-km SM products obtained from

SMAP (or SMAP/Sentinel-3 km and -1 km), NoahMP36,
and combined SM in comparison to the in situ observa-
tions. The R-values and ubRMSD of the combined product
(Tables VI and VII) were greatly improved in comparison to
the single uses of SM product. When the SMAP-9 km and
NoahMP36 data were taken alone, the median R-value versus
in situ SM data were 0.623 and 0.777, and the ubRMSDs
were (0.057 and 0.041) m3/m3, respectively. However, after
a combination of two data sources, the median R-value
increased to 0.825 and the median ubRMSD decreased to
0.034 m3/m3. Similarly, when the 3- and 1-km NoahMP36 data
were combined with the SMAP/Sentinel-3-km and -1-km SM
data, the median R-values increased significantly. Specifi-
cally, the finer resolution NoahMP36 data showed a greater
R-value improvement rate than the SMAP-9 km SM data.
For instance, the 3-km NoahMP36 SM R-value for obser-
vation #4 increased from 0.779 to 0.879, and the 1-km
NoahMP36 SM R-value for observation #6 increased from
0.625 to 0.834—results which cannot be accomplished with
coarser resolution SMAP products. These results indicate that
the newly available SMAP/Sentinel data have the potential
to improve the SM dynamics in modeled SM data. The
ubRMSD and bias values in the combined products were
greatly improved, and the combined product of satellite and
modeled SM data came very close to the target accuracy of
0.04 m3/m3. These results are very encouraging because they
show that a downscaled SMAP SM product can improve the
accuracy of regional-scale SM estimates. It is noteworthy that
the systematic differences between in-situ SM and each parent
product were removed before combining the two different SM
measurements from (7). Thus, the ubRMSD from a single
sensor measurement decreased dramatically.

Fig. 6 presents the three Taylor diagrams illustrating a
statistical comparison of data from the SMAP-9 km, 9-km
NoahMP36, and SMNS9 [Fig. 6(a)]; the SMAP-9 km,
3-km NoahMP36, and SMNS3 [Fig. 6(b)], and the
SMAP-9 km, 1-km NoahMP36, and SMNS1 [Fig. 6(c)]
against ground observations. The temporal variability of the
SM data is demonstrated by the SDV values. In all the three
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Fig. 5. Time series of SM from (a) 9-km SM products of the origi-
nal data (red), NoahMP36 SM (blue), and combined SM (green), and in situ
SM data. (b) and (c) Similar to (a) but show SMAP/Sentinel-3- and 1-km SM
data, respectively.

Taylor diagrams of Fig. 6, the SDV values of the original
SMAP, SMAP/Sentinel-3-, and -1-km data for the seven
stations are represented by red symbols. From the R-value
results, the R-values of combined products can be expected to
be higher than that of the three SMAP SM products because
the R-values of the NoahMP36 SM data have higher R-values
than the SMAP data. All original SM products show wide
scattering in the SDV, ranging from 0.49 to 1.6. The SDV value
closest to 1 (red dots and lines) has the temporal variation
closest to that of ground observation SM data because the
SDV value represents the ratio of standard SM deviations
from satellite or model products to in situ standard deviations.
Most SMAP/Sentinel-3- and -1-km data show greater variation
than in situ SM data. In contrast, all three resolutions of
the NoahMP36 SM data demonstrate lower variation than the
in situ SM data (blue symbols). After combination of two
SM data sources, the SDV values of the combined products,
SMNS9, SMNS3, and SMNS1 (represented by green symbols

in Fig. 6), gather near or slightly lower than the SDV range
of 1. This statistic indicates that the variability from combined
products is similar to or a bit lower than that of in situ SM data
alone. In addition, the combined products always produce a
higher R-value than the individual parent products. This result
emphasizes the fact that SMAP and SMAP/Sentinel products
can be used to improve the temporal pattern of fine SM spatial
resolutions estimated from LSMs. It is worth noting that after
calculating the w factor using (8), this w factor can be used to
combine two SM data sets and produce a combined product
that maximizes the R-value with the reference data (in situ
SM data). Once the w factor is determined, collecting ground
SM data might be no longer required.

D. Implications

This is the first attempt to evaluate the accuracy of
SMAP/Sentinel-1-km data over the coastal plain regions.
Although the 1-km data had lower accuracy relative to
coarser resolution data (i.e., SMAP-9 km and SMAP/Sentinel-
3 km), they exhibited reliable results when combined with
the NoahMP36 LSM. Demonstration of the possibility to
provide high-resolution SM data has implications on water
resource management. Hydrological processes vary spatiotem-
porally [96], impeding establishment of site-specific water
management plans. As shown in Fig. 3, finer data (e.g., 1 km)
better capture heterogeneity of SM over the landscape than
coarser data (e.g., 9 and 3 km). Regarding that SM is a key
indicator of hydrologic cycle, the 1-km SM from space data
can be used as supportive data to identify specific locations
experiencing water-related issues, droughts, and floods. Fur-
thermore, high-resolution SM data can improve the credibility
of process-based hydrological models that are increasingly
used for water resource management [97], [98]. A common
model calibration practice solely depends on observations
acquired at the catchment outlet due to the lack of spatialized
data, incurring predictive uncertainty [99], [100]. Inclusion of
1 km enables hydrological models to accurately depict reality
by provision of additional constraints and reducing model
uncertainty. However, the temporal resolution of disaggregated
SM data from SMAP/Sentinel-1A/B is too coarse to be used
in certain hydrological studies such as SM memory calcula-
tions [101].

This study is the first research that documents the per-
formance of SMAP products on the “core” site within the
drainage area of the Chesapeake Bay. The Chesapeake Bay
is the largest and most productive estuary in the Northern
America and a Ramsar wetland site of international impor-
tance [102], [103]. Albeit the Chesapeake Bay is the national
and international asset, its environment is extremely deterio-
rated due to agricultural pollutants loads [104]. Thus, efforts
to monitor hydrologic components influencing pollutant loads
have been emphasized to improve the health of the Chesapeake
Bay [105]. Numerous researches have been conducted on the
CRW where croplands are most densely distributed within the
drainage area of the Chesapeake Bay [32]. In conjunctions
with the ongoing monitoring efforts [32], [106], enhanced
detections of SM dynamics aid to understanding hydrologic
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TABLE VI

VALIDATION RESULTS OF R-VALUES FOR THE 9-km, 3-km, AND 1-km RESOLUTIONS OF SMAP, NOAHMP36, AND COMBINED SM PRODUCTS

TABLE VII

VALIDATION RESULTS OF UBRMSDS FOR THE 9-km, 3-km, AND 1-km RESOLUTIONS OF SMAP, NOAHMP36, AND COMBINED SM PRODUCTS

Fig. 6. Taylor diagrams show the statistical comparisons of different resolution SM products. (a) 9-, (b) 3-, and (c) 1-km SM data sets. The original
SM, NoahMP36, and combined-SM products with in situ observations for seven different SM observations are shown with red, blue, and green symbols,
respectively; each symbol indicates a different SM observation.

characteristics and associated pollutant loads in this key site.
Therefore, this study can serve as one of contributing efforts
to mitigate deterioration of the Bay’s health.

VI. CONCLUSION

In this study, we evaluated and merged newly available
high-resolution SM data (9, 3, and 1 km) retrieved from the
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radiometer aboard SMAP and the SAR aboard Sentinel-1A/B
in combination with the NoahMP36 LSM for an agricultural
landscape within the Mid-Atlantic Coastal Plain. The per-
formance of SMAP/Sentinel-3- and -1 km data is encour-
aging because the 3-km spatial resolution SM data can be
used in many different areas that require fine-resolution SM
data. The overall SM spatial pattern corresponds well to the
precipitation pattern observed from GPM. An exponential
filter was used to overcome the depth mismatch between
satellite-based and in situ SM data for validation purposes,
but of the three satellite observations, only the SM data
from SMAP-9 km showed improvement. However, after appli-
cation of the CDF matching approach, the products of all
three data sources—SMAP-9 km, SMAP/Sentinel-3 km, and
-1 km—improved in terms of the R-value and ubRMSD.
The R-values and ubRMSD of the CDF-matched SMAP
products were 0.658, 0.626, and 0.570 and 0.049, 0.053, and
0.055 m3/m3, respectively. By combining the SMAP data with
the NoahMP36 LSM SM data, we were able to improve the
overall accuracy of the SM data: the R-values for combined
SM data of 9-, 3-, and 1-km resolution were 0.825, 0.804, and
0.795, and the ubRMSD values were 0.034, 0.036, and 0.037
m3/m3, respectively. This result shows the potential use of
SMAP/Sentinel data to enhance regional-scale modeled SM
data and to improve the accuracy of LSMs. In the future
studies, we will assimilate the high-resolution SMAP data with
various LSMs and validate the results over different core sites
in CONUS and on a global scale using the International Soil
Moisture Network SM data sets.

APPENDIX

A. Supplementary Information of the Study Site

TABLE VIII

LAND USE AND SOIL PROPORTIONS

TABLE IX

DESCRIPTION OF AGGREGATED CLASSES

Fig. 7. Spatial distribution of hydrologic soil group.

B. Results for Obs. #2 – #7

Fig. 8. Time series of SM from (a) the 9-km SM products of
original data (red), SWI (blue), and CDF SM (green), compared with
in-situ SM data. (b) and (c) represent the same information as (a)
but for SMAP/Sentinel-3- and 1-km SM data (ground observations #2),
respectively.
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Fig. 8. (Continued.) Time series of SM from (a) the 9-km SM prod-
ucts of original data (red), SWI (blue), and CDF SM (green), compared
with in-situ SM data. (b) and (c) represent the same information as (a)
but for SMAP/Sentinel-3- and 1-km SM data (ground observations #3),
respectively.

Fig. 8. (Continued.) Time series of SM from (a) the 9-km SM prod-
ucts of original data (red), SWI (blue), and CDF SM (green), compared
with in-situ SM data. (b) and (c) represent the same information as (a)
but for SMAP/Sentinel-3- and 1-km SM data (ground observations #4),
respectively.

Fig. 8. (Continued.) Time series of SM from (a) the 9-km SM prod-
ucts of original data (red), SWI (blue), and CDF SM (green), compared
with in-situ SM data. (b) and (c) represent the same information as (a)
but for SMAP/Sentinel-3- and 1-km SM data (ground observations #5),
respectively.

Fig. 8. (Continued.) Time series of SM from (a) the 9-km SM prod-
ucts of original data (red), SWI (blue), and CDF SM (green), compared
with in-situ SM data. (b) and (c) represent the same information as (a)
but for SMAP/Sentinel-3- and 1-km SM data (ground observations #6),
respectively.
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Fig. 8. (Continued.) Time series of SM from (a) the 9-km SM prod-
ucts of original data (red), SWI (blue), and CDF SM (green), compared
with in-situ SM data. (b) and (c) represent the same information as (a)
but for SMAP/Sentinel-3- and 1-km SM data (ground observations #7),
respectively.

Fig. 9. Time series of SM from (a) the 9-km SM products
of the original data (red), NoahMP36 SM (blue), and combined-SM
(green), and in-situ SM data. (b) and (c) are similar to (a) but
show SMAP/Sentinel-3- and 1-km SM data (ground observations #2),
respectively.

Fig. 9. (Continued.) Time series of SM from (a) the 9-km SM prod-
ucts of the original data (red), NoahMP36 SM (blue), and combined-
SM (green), and in-situ SM data. (b) and (c) are similar to (a) but
show SMAP/Sentinel-3- and 1-km SM data (ground observations #3),
respectively.

Fig. 9. (Continued.) Time series of SM from (a) the 9-km SM prod-
ucts of the original data (red), NoahMP36 SM (blue), and combined-
SM (green), and in-situ SM data. (b) and (c) are similar to (a) but
show SMAP/Sentinel-3- and 1-km SM data (ground observations #4),
respectively.
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Fig. 9. (Continued.) Time series of SM from (a) the 9-km SM products of
the original data (red), NoahMP36 SM (blue), and combined-SM (green), and
in-situ SM data. (b) and (c) are similar to (a) but show SMAP/Sentinel-3- and
1-km SM data (ground observations #5), respectively.

Fig. 9. (Continued.) Time series of SM from (a) the 9-km SM prod-
ucts of the original data (red), NoahMP36 SM (blue), and combined-
SM (green), and in-situ SM data. (b) and (c) are similar to (a) but
show SMAP/Sentinel-3- and 1-km SM data (ground observations #6),
respectively.

Fig. 9. (Continued.) Time series of SM from (a) the 9-km SM prod-
ucts of the original data (red), NoahMP36 SM (blue), and combined-
SM (green), and in-situ SM data. (b) and (c) are similar to (a) but
show SMAP/Sentinel-3- and 1-km SM data (ground observations #7),
respectively.

C. Supporting Information for 36-km SM Data Validation

TABLE X

VALIDATION RESULTS OF R AND BIAS FOR

THE 36-km SM DATA FROM SMAP L3
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