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A B S T R A C T   

Over the past four decades, satellite systems and land surface models have been used to estimate global-scale 
surface soil moisture (SSM). However, in areas such as densely vegetated and irrigated regions, obtaining ac-
curate SSM remains challenging. Before using satellite and model-based SSM estimates over these areas, we 
should understand the accuracy and error characteristics of various SSM products. Thus, this study aimed to 
compare the error characteristics of global-scale SSM over vegetated and irrigated areas as obtained from active 
and passive satellites and model-based data: Advanced Scatterometer (ASCAT), Soil Moisture and Ocean Salinity 
(SMOS), Advanced Microwave Scanning Radiometer 2 (AMSR2), Soil Moisture Active Passive (SMAP), European 
Centre for Medium-Range Weather Forecasts Reanalysis 5 (ERA5), and Global Land Data Assimilation System 
(GLDAS). We employed triple collocation analysis (TCA) and caluclated conventional error metrics from in-situ 
SSM measurements. We also considered all possible triplets from 6 different products and showed the viability of 
considering the standard deviation of TCA-based numbers in producing robust results. 

Over forested areas, it was expected that model-based SSM data might provide more accurate SSM estimates 
than satellites due to the intrinsic limitations of microwave-based systems. Alternately, over irrigated regions, 
observation-based SSM data were expected to be more accurate than model-based products because land surface 
models (LSMs) cannot capture irrigation signals caused by human activities. Contrary to these expectations, 
satellite-based SSM estimates from ASCAT, SMAP, and SMOS showed fewer errors than ERA5 and GLDAS SSM 
products over vegetated conditions. Furthermore, over irrigated areas, ASCAT, SMOS, and SMAP outperformed 
other SSM products; however, model-based data from ERA5 and GLDAS outperformed AMSR2. Our results 
emphasize that, over irrgated areas, considering satellite-based SSM data as alternatives to model-based SSM 
data sometimes produces misleading results; and considering model-based data as alternatives to satellite-based 
SSM data in forested areas can also sometimes be misleading. In addition, we discovered that no products 
showed much degradation in TCA-based errors under different vegetated conditions, while different irrigation 
conditions impacted both satellite and model-based SSM data sets. 

The present research demonstrates that limitations in satellite and modeled SSM data can be overcome in 
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many areas through the synergistic use of satellite and model-based SSM products, excluding areas where sa-
tellite-based data are masked out. In fact, when four satellite and model data sets are used selectively, the 
probability of obtaining SSM with stronger signal than noise can be close to 100%.   

1. Introduction 

Evapotranspiration (ET) over forest areas is a significant contributor 
to total global precipitation (Cox et al., 2000; Ding et al., 2011). One of 
the most important hydrological variables in controlling the variability 
of ET is soil moisture (SM) on the surface and in the root zone (Juárez 
et al., 2007) since SM in the deep soil layer permits a relatively high ET 
rate throughout the year. In addition, under sufficient SM conditions, 
the variability of ET is controlled by net radiation, vapor pressure 
deficit, and wind speed (Costa et al., 2004; Werth and Avissar, 2004). 

The variability of 5-cm SM can be closely coupled with root-zone 
(0–100 cm) soil moisture (RZSM) variability. Therefore, an accurate 
estimation of surface SM (SSM) allows more precise prediction of RZSM 
as surface wetness influences infiltration to the deeper layers and 
consequently allows for improved modeling of the root zone and the 
plant's available water at a coarse-scale spatial resolution. Much pre-
vious research has shown that using SSM data obtained by satellite can 
significantly improve the prediction of RZSM (Das and Mohanty, 2006;  
Ford et al., 2014). Specifically, RZSM can be effectively predicted with 
an exponential decay filter, as shown in Wagner et al. (1999). Fur-
thermore, Das and Mohanty, (2006) and Dumedah et al. (2015) showed 
that assimilating remotely-sensed SSM data into land surface models 
(LSM) provides improved SM quality with consistent accuracy at both 
the surface and root zone layers. More recently, Reichle et al. (2017) 
introduced a Level-4 surface (0–5 cm) and RZSM product generated by 
assimilating brightness temperature (Tb) obtained from the Soil 
Moisture Active Passive (SMAP) into an LSM. Their product showed 
significant improvement in the performance of RZSM after assimilation 
of SMAP Tb data. All these studies support the fact that SSM obtained 
by remotely-sensed methods can greatly benefit the prediction of 
RZSM. However, SM from deeper layers down to several meters would 
be hard to directly observe from L-band microwave products. One 
promising method for predicting SM deeper than 5 cm from space is the 
use of P-band Synthetic Aperture Radar (SAR) data (Chapin et al., 
2012). 

All these factors indicate that knowing the variability of SSM and 
obtaining accurate SSM is important in understanding land-atmosphere 
interactions. Here, we conducted a global analysis with a more specific 
focus on forested ecosystems and irrigated lands as they represent areas 
where both remote sensing retreivals and model predictions may have 
some limitations. 

In forest, ground-based observation methods are limited spatially 
and heterogeneity of the landsurface increases the uncertainty of any 
ground based SSM estimates. It has also been demonstrated that over 
dense forest areas such as the Amazon River Basin and Southeast Asia, 
the accuracy of SSM retrievals from microwave sensors may be limited 
(Al-Yaari et al., 2014a; Burgin et al., 2017). Over densely vegetated 
areas, most of the satellite-based data is usually masked out because 
plant biomass saturates the microwave signal, resulting in high data 
errors and uncertainties. 

Irrigated fields are artificial ecosystems that are created and man-
aged by human beings. Anthropogenic techniques directly impact the 
distribution of SM across the topsoil layer (Cho et al., 2019; Lawston 
et al., 2017; Seneviratne et al., 2010). These effects, in turn, alter soil 
characteristics such as surface-layer soil macroporosity, infiltration and 
percolation rates, discharge fluxes, and evaporative demands. Several 
studies have shown that irrigation plays a critical role in increasing ET, 
and that it directly impacts local surface energy and water budget 
partitioning (Cook et al., 2011; Crow et al., 2005; Lobell et al., 2009;  
Sacks et al., 2009). Consequently, irrigation affects the large-scale 

volumetric atmospheric thermodynamic features from the lower at-
mosphere to the upper troposphere, thus altering the entire global-scale 
water cycle (Pei et al., 2016; Puma and Cook, 2010); and human ac-
tivities specially designed to produce crops more rapidly will affect SM 
conditions and significantly impact natural biosphere-atmosphere in-
teractions (Lo and Famiglietti, 2013). 

Specifically, the size of a single unit of the center-pivot irrigation 
system or a linear/lateral move irrigation machine is less than 1 km, but 
irrigation conducted using these systems are is usually clustered with 
several center pivot circles and lines. Thus, the scale of the irrigation 
area can be greater than 25 km, meaning it can be seen from space via 
optical and infrared sensors (Deines et al., 2017). Many attempts have 
been made to compare SSM simulations from several different land 
surface models against satellite SSM products in order to identify irri-
gated areas and improve the quality of SSM in LSMs (Abolafia- 
Rosenzweig et al., 2019; Deines et al., 2017; Escorihuela and Quintana- 
Seguí, 2016; Kumar et al., 2015; Lawston et al., 2017). These studies 
have found SSM data obtained from space to be extremely useful in 
detecting irrigation activities and improving the SM estimation in LSMs. 
However, few studies have evaluated and intercompared satellite- and 
model-based SSM data over irrigated areas even though SM information 
over irrigated areas is critical in developing coupled accurate land-at-
mosphere models (Al-Yaari et al., 2019a). Furthermore, it should also 
be noted that in-situ sensors are rarely available for irrigation in agri-
cultural lands; thus, it is important to utilize remotely sensed data that 
can estimate SSM variability over irrigated areas. 

To fully understand the role of forests and the effects of irrigation on 
Earth's environment and hydrological cycle, near-real-time large-scale 
SM data sets can be very useful (Lawston et al., 2017); therefore, it is 
necessary to employ satellite- and/or model-based SSM products. Cur-
rently, hydrologists track changes in SSM levels using global-scale SSM 
estimates retrieved from active and passive microwave remote sensing, 
and LSMs (Karthikeyan et al., 2017; Kumar et al., 2006; Rodell et al., 
2004). This provides an effective method for monitoring near-real-time 
SSM contents at various temporal and spatial resolutions. Researchers 
have proposed various methods of obtaining near-surface SM retrievals 
from satellite microwave instruments (Bindlish et al., 2015; Entekhabi 
et al., 2010; Jackson et al., 2010; Kerr et al., 2001; Lakshmi et al., 1997;  
Wagner et al., 1999; Wigneron et al., 2017). In addition to the active 
and passive satellite-based microwave SM missions, including the Ad-
vanced Microwave Scanning Radiometer (AMSR-E), the Advanced 
Scatterometer (ASCAT), the Soil Moisture and Ocean Salinity (SMOS), 
the Advanced Microwave Scanning Radiometer 2 (AMSR2), and the 
SMAP mission, researchers have also experimented applying Global 
Navigation Satellite System (GNSS) signals to the investigation of SSM 
(Kim and Lakshmi, 2018). The primary advantage of using satellite- 
based SSM data is that they are derived from observation-based (i.e., 
non-artificial) SSM retrieval systems; thus, they have a strong potential 
to detect SSM variation caused by human activities such as irrigation 
(Lawston et al., 2017). Model-produced SSM data cannot detect such 
changes because the major forcing element used to predict SSM values 
is precipitation, and models cannot distinguish between natural and 
anthropogenic effects that occur over land since they cannot easily 
evaluate the amount of irrigated water. 

One of the major drawbacks in using current satellite-based SSM 
data based on microwave retrieval systems is the limitation caused by 
revisiting time: satellites cannot provide spatially and temporally con-
tinuous coverage due to their sun-synchronous orbits. They can only 
provide SSM estimates one to two times per day, hampering researchers 
who are attempting to describe the fundamental processes that control 
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Fig. 1. Maps of (a) areas equipped for irrigation (AEI) and (b) X-band vegetation optical depth (VOD) (2015–2019).  
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the terrestrial hydrologic cycle (Kim and Lakshmi, 2019). It has also 
been investigated that over dry areas such as the Sahara and Takla-
makan deserts, the accuracy of SSM retrievals from microwave sensors 
may be limited (Al-Yaari et al., 2014a; Burgin et al., 2017). Over den-
sely vegetated areas, most of the data is usually masked out because 
plant biomass saturates the microwave signal, resulting in high data 
errors and uncertainties. Over dry areas, the challenges are caused by 
problems in estimating the thickness of the emitting layer and the ef-
fective temperature. Low-frequency microwaves (i.e., L-bands) pene-
trate dry soils more deeply, so the signals are representative of deeper 
soil layers. Signals from deep soil layers can cause problems for active 
systems (e.g., radar; ASCAT). The reason is that radar signals provide 
highly directional measurements and are thus more sensitive to the 
roughness of sub-surface scatterers (e.g., rock below a layer of dry sand) 
(Ulaby et al., 2014; Morrison and Wagner, 2019; Wagner et al., 2013). 
Problems similar to those of ASCAT are also seen in SMOS, SMAP, and 
AMSR2 data, although the effects appear to be much smaller. 

By contrast to satellite-based SSM estimates, model-based SSM data 
are more flexible in terms of temporal and spatial coverage, and they 
can provide SM estimates of various depths (Rodell et al., 2004). LSMs 
are forced with various observation sources, including satellite data, 
precipitation observations from gauges and radar, and output from 
numerical prediction models. The necessary models' land parameters 
are calculated from existing high-resolution vegetation and soil cov-
erage as constant values (e.g., soil texture, land use land cover in-
formation, etc.). With these input data sets, it is possible to predict SM 
values over densely vegetated areas from LSMs that are limited in re-
gions for which microwave-based SM retrievals may be used. However, 
model-based SM data are far from perfect simulations of hydrological 
variables; they are mere simplifications of the real world. Thus, mod-
eled results might not effectively reflect near-real-time changes in earth 
surfaces, including fluxes (e.g., evaporation and runoff), storage (e.g., 
SM or snow), and real-time land surface changes (e.g., wildfires). 
Consequently, modeled results are limited in their ability to detect 
anthropogenic activities (e.g., irrigation and biomass burning) and 
natural phenomena (e.g., wildfires and dust outbreaks). It is apparent, 
then, that we should avoid relying too much on one source of SSM 
information and try to utilize SSM data from multiple sources over the 
forest and irrigated areas. 

Acknowledging the existence of these limitations in satellite- and 
model-based SM data sets, the present study will focus on the error 
characteristics of both satellite-based and global-scale models' SSM es-
timates over the forest and irrigated areas. For this analysis, we will 
focus on using a triple collocation analysis (TCA) to inter-compare the 
global-scale error patterns of four satellite-based SSM data sets obtained 
from the forest and irrigated regions by ASCAT, SMOS, AMSR2, and 
SMAP; and two model data sets from the European Centre for Medium- 
Range Weather Forecasts Reanalysis 5 (ERA5) and NASA's GLDAS. 

TCA has been used in several studies to evaluate global-scale re-
motely sensed and model-based SSM data (Crow et al., 2005; Dong and 
Crow, 2017; Draper et al., 2013; Gruber et al., 2016; McColl et al., 
2014; Miyaoka et al., 2017; Scipal et al., 2010; Stoffelen, 1998; Su et al., 
2014a, 2014b). In recent years, especially, its use in evaluating SMAP 
SSM data has significantly enhanced our understanding of the absolute 
and relative error characteristics of satellite-based SSM estimations 
(Chen et al., 2017, 2018; Cho et al., 2015; Dong et al., 2018; Yilmaz and 
Crow, 2014). TCA has been used to intercompare SMAP and other sa-
tellite-based SSM products and it has also provided information critical 
to the application of satellite-based SM data in such research fields as 
the assimilation of satellite-based SSM data into LSMs and merging SSM 
from various satellite sensors (Gruber et al., 2017). 

One of the most important tasks in conducting TCA is deliberately 
composing triplets to avoid the violation of TCA assumptions (Dong and 
Crow, 2018; McColl et al., 2014). In particular, the assumption about 
the statistical nature of errors, including mutual independence, the 
validity of assuming that the different data sets represent the same 

physical variables, orthogonality to the truth value, etc., are required 
for robust TCA. However, conformity to all recognized TCA assump-
tions is close to impossible with current satellite and model-based SSM 
data due to various limitations (e.g., different representative depth of 
each data set and similar retrieval algorithms; further details are in-
cluded in the methodology section). This fact indicates that considering 
a single triplet for TCA would lead to biased results; however, many 
previous studies have estimated satellite-based data sets (e.g., SSM, ET, 
precipitation, surface albedo, and wind vector components) with a 
single triplet mostly because there were not enough data sets for 
building alternative triplet (Alemohammad et al., 2015; Caires, 2003;  
Khan et al., 2018; Kim et al., 2018; Miyaoka et al., 2017; Wu et al., 
2019). 

In the present research, we considered all possible triplets from four 
satellites and two model-based SM products. The main goal of this re-
search was to compare and estimate the error patterns of current sa-
tellite and LSM systems over forest and irrigated areas, which have been 
considered the most challenging environmental conditions for SSM 
estimations by both satellite and LSMs. For the girdcell-scale informa-
tion of irrigation activities and density of the vegetation matter, we 
used the Global-scale Irrigation Data (GMIA; Section 2.1) and Vegeta-
tion Optical Depth (VOD; Section 2.2), respectively. We have also il-
lustrated the lowest possible errors that can be obtained from selective 
uses of up-to-date satellite and model-based SSM products on a global 
scale. 

2. Data sets 

2.1. The global-scale irrigation data 

In the present study, we assumed that the Global Map of Irrigation 
Areas (GMIA) reasonably represent areas of irrigation (Siebert et al., 
2013). By combining sub-national and national-level statistics with 
geospatial information, Siebert et al. (2005) derived the percentage of 
area equipped for irrigation (AEI) at a spatial resolution of 5 min. 
Hence, the data used in this study from the GMIA map estimates the 
areas of land equipped for irrigation as a percentage of the total area on 
a raster of 10 classes of irrigated areas (Fig. 1(a)). The GMIA data is 
widely utilized for various purposes; for instance, it is used as reference 
data (e.g., the ground-truth data of irrigation areas) to validate newly 
developed irrigation maps (Salmon et al., 2015; Thenkabail et al., 2009;  
Zohaib et al., 2019), and it is utilized to predict the impact of irrigation 
activities on global climate systems (Pryor et al., 2016; Tuinenburg and 
de Vries, 2017). Based on the empirical cumulative distribution func-
tion, F(AEI), we defined barely, moderately, and actively irrigated re-
gions: barely irrigated regions were defined as those in which the AEI 
was less than 0.8% (F−1(1/3)), moderately irrigated regions were de-
fined as those in which the AEI was greater than 0.80% but less than 
12.78% (F−1(2/3)), and actively irrigated regions were defined as those 
in which the AEI was greater than 12.78%. In addition, in order to 
consider cropland areas alone, we used the cropland areas extracted 
from the land classification map from the International Geosphere- 
Biosphere Programme (IGBP) (Section 2.5). 

2.2. Vegetation optical depth 

Vegetation Optical Depth (VOD) can provide useful information re-
garding the water content of vegetation and the structure of above-ground 
vegetation (Konings et al., 2017). In this study, we employed the LPRM- 
based yearly-averaged VOD computed at X-band which was calculated from 
data obtained during the AMSR2 descending overpass. This product was 
retrieved from the AMSR2 brightness temperature measurements using the 
Microwave Polarization Difference Index (Owe et al., 2001). We used VOD 
data from AMSR2 as X-band is less vulnerable to radio frequency inter-
ference (RFI). Based on the empirical cumulative distribution function, F 
(VOD), we defined sparsely, moderately, and densely forested regions: 
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sparsely vegetated regions were defined as those in which the VOD was less 
than 0.31 (F−1(1/3)), moderately vegetated regions were defined as those 
in which the VOD was greater than 0.31 but less than 0.62 (F−1(2/3)), and 
densely forested regions were defined as those in which the VOD was 
greater than 0.62. Fig. 1(b) shows the average VOD value during the study 
period (from 2015 to 2019). In addition, in order to mask out deserts, semi- 
deserts, urban and built-up areas, and irrigated crop areas, we used the land 
classification map from the AEI and IGBP data sets (Fig. 1(a) and Section 
2.5). 

2.3. Satellite soil moisture data 

2.3.1. Advanced Scatterometer (ASCAT) 
The ASCAT sensors are onboard the Meteorological Operational A, 

B, and C (MetOp-A (October 2006), MetOp-B (September 2012), and 
MetOp-C (November 2018)) satellites (Wagner et al., 2013) which are 

operated by European organization for the exploitation of METeor-
ological SATellites (EUMETSAT). ASCAT includes an active microwave 
remote-sensing instruments and it acquires radar backscatter mea-
surements at a frequency of C-band (5.3 GHz, wavelength = 5.7 cm). 
The ASCAT overpasses at 09:30 and 21:30 local time in descending and 
ascending orbit, respectively. The degree of saturation is calculated 
from the backscattering coefficient measured at a reference angle of 40° 
based on the method of Wagner et al. (1999), by using the historically 
lowest (dry, 0%) and highest (wet, 100%) observed backscatter. The 
volumetric SSM content given in cm3cm−3 was produced by multi-
plication with the soil porosity data (Wagner et al., 2013). In this study, 
we used ASCAT SSM data distributed by the EUMETSAT H-SAF called 
H111, which is based on the TU Wien algorithm. H111 is a combination 
of MetOp-A and B satellites. This product includes a 12.5 km spatial 
sampling, and temporal resolution depends on the latitudinal location 
and number of MetOp satellites it uses. A daily sampling can be 

Fig. 2. Maps of averaged (from 2015 to 2019) surface soil moisture (SSM) for (a) ASCAT, (b) SMOS, (c) AMSR2, (d) SMAP, (e) ERA5, and (f) GLDAS. Average values 
were calculated over the pixel where all the six SSM data are available both in space and time. Upper and right panels indicate longitude and latitude zonal means of 
SSM, respectively. Inset graphs represent PDF for each data set, marker sizes in zonal plots illustrate proportional to zonal land area, and the shaded region shows ± 1 
standard deviation. 
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obtained using only MetOp-A, and two observations per day can be 
achieved by using both MetOp satellites near the mid-latitudes (Brocca 
et al., 2019). The average of ASCAT SSM data from 2015 to 2019 is 
shown in Fig. 2(a). 

2.3.2. Soil moisture and ocean salinity (SMOS) 
The SMOS satellite is one of the European Space Agency (ESA)’s 

Earth Explorer missions, launched in November 2009. SMOS carries 
Microwave Imaging Radiometer with Aperture Synthesis (MIRAS) and 
estimates the SSM conditions as well as the salinity of seawater. The 
MIRAS instrument is an L-band (1.41 GHz, wavelength = 21 cm) 2-D 
interferometric radiometer and it observes the variations in the natural 
microwave emitted from the surface of the earth's surface with multiple 
incidence angles (0°–65°). The SMOS mission's accuracy requirement is 
0.04 cm3cm−3 at a depth of 3–5 cm SSM at 35–50 km spatial resolution 
every 2–3 days (Kerr et al., 2001). The SMOS overpasses at 18:00 and 
06:00 local time in descending and ascending orbit, respectively. Most 
recently, the SMOS-IC product has been developed (Fernandez-Moran 
et al., 2017). This product is considered to produce high-quality SMOS 
SSM (Al-Yaari et al., 2019b; Li et al., 2020; Ma et al., 2019), and SMOS- 
IC is available from 2009 to 2019. In this study, we used SMOS-IC SSM 
V106 data (hereafter SMOS) and considered scene flag information. The 
data was used if the scene flag was greater than one. This allowed us to 
remove topography effects, pollution (i.e., the water, urban area, or ice 
mixture was greater than 10% of the pixel), and frozen pixels (i.e., the 
ECMWF surface temperature was lower than 273 K). Tb-RMSE flag 
values larger than 8 K were masked out to avoid areas that showed a 
strong RFI effect on SSM data. The SSM range from 0 m3/m3 to 0.6 m3/ 
m3 was used (Li et al., 2020). Filtering SMOS-IC data based on these 
quality flags allowed us to use the highest quality SSM estimates. The 
annual average of SMOS SSM data from 2015 to 2019 is shown in  
Fig. 2(b). 

2.3.3. Advanced microwave scanning radiometer 2 (AMSR2) 
Through the collaboration of NASA and JAXA, the AMSR2 sensor 

onboard the Global Change Observation Mission 1-Water (GCOM-W1) 
platform was launched on May 2012 as the successor to JAXA'S 
Advanced Microwave Scanning Radiometer for Earth Observing System 
(AMSR-E) sensor which terminated operation in October 2011 (Bindlish 
et al., 2018). AMSR2 has 7 frequencies and 14 channels, and for the 
SSM estimation, AMSR2 uses three different microwave frequency 
bands at C1 (6.9 GHz, wavelength = 4.3 cm), C2 (7.3 GHz, wave-
length = 4.1 cm), and X (10.6 GHz, wavelength = 2.8 cm), with a 
1450 km swath-width. Its incidence angle is fixed at 55°. Their original 
ground resolutions depend on frequency channels (C1-band: 
24 × 42 km, C2-band: 34 × 58 km; X-band: 35 × 62 km) with a revisit 
time of 1–2 days and it crosses the equator at 01:30 local times and 
13:30 local time in descending and ascending orbits, respectively 
(Bindlish et al., 2018). In this study, we used X-band the Land Para-
meter Retrieval Model (LPRM) AMSR2 data (descending path). We se-
lected X-band based LPRM SSM product because SSM from the C-band 
wavelength might have partially correlated errors with other satellite- 
based SSM products (please refer to Section 3.2 for detailed informa-
tion). The annual average of AMSR2 SSM data from 2015 to 2019 is 
shown in Fig. 2(c). 

2.3.4. Soil moisture active passive (SMAP) 
The SMAP mission is the Earth observation satellite developed by 

NASA in response to the National Research Council's Earth Science 
Decadal Survey. The mission was launched in January 2015 and began 
regular data collection in April of 2015 (Entekhabi et al., 2010). SMAP 
provides estimates of the moisture content of the top 0–5 cm soil layer 
with a revisit every 1–3 day in a near-polar and sun-synchronous orbit, 
and it overpasses the Equator at approximately 06:00 and 18:00 local 
time in descending and ascending orbits, respectively. Similar to the 
SMOS SSM retrieval system, SMAP also observes the variations in the 

natural microwave emitted from the surface of the earth surface pro-
vided by a low microwave frequency L-band radiometer (1.41 GHz, 
wavelength = 21 cm) with nominal incidence angle 40° (O'Neill et al. 
2015). In the present study, we used the Level-3 SMAP SSM data from 
the descending overpass time observations, the data were masked for 
SSM lower than 0.02 cm3cm−3 and higher than 0.50 cm3cm−3, and the 
retrieval information in the retrieval quality flag showed recommended 
quality (0 Bit). Level-3 radiometer global daily 36 km retrievals in 
Equal-Area Scalable Earth 2 (EASE2) grid are the composition of SMAP 
Level-2 SSM retrievals. We used SMAP L3 Version 6 which is the 
baseline algorithm is Single Channel Algorithm-Vertical (SCA-V) 
(https://nsidc.org/data/SPL3SMP/versions/6). The annual average of 
SMAP SSM data from 2015 to 2019 is shown in Fig. 2(d). 

2.4. Model-based data 

2.4.1. European Centre for Medium-Range Weather Forecasts Reanalysis 5 
(ERA5) 

The ERA5 data, available from 1979 to present, is produced by 
ECMWF and is available from the Copernicus Climate Change service. 
ERA5 is currently the latest global climate reanalysis data produced by 
ECMWF and follows other reanalysis products: the First Global 
Atmospheric Research Program, Global Experiment, the ECMWF 
Reanalysis 15, the ECMWF Reanalysis 40, and the ERA-Interim. The 
ERA5 products are expected to be updated once per month, with a delay 
of 2 months for quality assurance and for correcting technical problems 
with production. The forcing data is obtained by assimilating ob-
servation data (e.g., 2-m temperature and ASCAT SSM) through a 4D- 
VAR data assimilation system and a simplified extended Kalman filter, 
respectively. This forcing data is derived from the ERA5-Land single 
simulation without coupling to the atmospheric module of the ECMWF's 
Integrated Forecasting System (IFS) or to the ocean wave model of the 
IFS. ERA5 has been providing spatially complete and gridded atmo-
spheric and land surface variables with an hourly temporal resolution 
and a spatial resolution from 0.1° × 0.1° (9 km) from January 2001 to 
present. SSM and surface temperature are provided as instantaneous 
parameters that represent time scales equal to the model time step. In 
the present study, we used ERA5 top 0–7 cm SSM data along with the 
satellite data sets for TCA and surface temperature data in order to 
exclude SSM data when the temperature was lower than 273.13 K. The 
annual average of ERA5 SSM data from 2015 to 2019 is shown in  
Fig. 2(e). 

2.4.2. Global land data assimilation system (GLDAS) 
GLDAS data is produced by the Land Information System (LIS) 

software framework (Kumar et al., 2006). The GLDAS Version 2 has two 
components: one forced with the Princeton meteorological forcing data 
(from 1948 to 2010; GLDAS 2.0), and the other forced with a combi-
nation of model and observation-based forcing data sets (from 2010 to 
present; GLDAS 2.1). In this study, we used the GLDAS 2.1-Noah 
(hereafter GLDAS) that is based on a combination of model and various 
satellite- and ground-based observations. It produces the best estima-
tion of the land surface conditions simulated with the Noah Model 3.3 
in LIS Version 7 (Rodell et al., 2004). GLDAS data provides numerous 
atmospheric and land surface variables with a temporal resolution of 3- 
hourly and monthly with a spatial resolution from 0.25° × 0.25° to 
1° × 1°. In the present study, we performed TCA using the top 0–10 cm 
of GLDAS SSM data together with a satellite data sets and surface 
temperature data (with 0.25° × 0.25° spatial resolution); we only used 
SSM data where the surface temperature was over 273.15 K. The annual 
average of GLDAS SSM data from 2015 to 2019 is shown in Fig. 2(f). 

2.5. Ground soil moisture observations 

To evaluate the four remotely sensed and two model products, and 
to compare the conventional error metrics with the TCA-based error 
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metrics, we employed SM data obtained from both dense and sparse 
networks. For the sparse SM stations, we downloaded data from the 
International Soil Moisture Network (ISMN). ISMN is a web-based data 
center that collects and organizes ground-based SM measurements, and 
the data is freely available through a web interface (https://ismn.geo. 
tuwien.ac.at/; accessed on 1. June. 2020). The ISMN in-situ SM data 
have been widely used to validate different satellite-based SSM re-
trievals and land surface models, and the ISMN currently holds ground- 
based SM measurements provided by more than 2000 ground stations 
which are operated by more than 55 different networks (Dorigo et al., 
2011, 2013, 2015). In this study, we used ISMN SM stations that 
measure SM at a depth of less than 10 cm and provide data which 
covers the study period (2015–2019). In total, 1662 ground-based, 
sparse-SM stations were tested based on the quantity and quality of 
their SM data (black circles in Fig. 3). All data sets were quality con-
trolled (Dorigo et al., 2013) and cross screened in order to narrow the 
data to grid pixels for which all six satellite- and model-based SM data 
sets were commonly attainable. In order to obtain robust statistical 
results, we excluded SM stations for which the corresponding grid pixel 
had < 300 data points in time. As a further step, if multiple stations 
were situated within the same grid pixel, we arithmetically averaged all 
the stations' SM values. After preprocessing, data at 180 sites were vi-
able; most of these were located in the contiguous United States 
(CONUS) and European countries (red filled circle in Fig. 3). A detailed 
description of the ISMN used in this study is summarized in Table S1. 

In addition to the sparse networks, we also considered dense SM 
networks in calculating relative error metrics (please refer to Section 
4.2 for a detailed discussion about our use of dense and sparse net-
works). For dense ground-based SM observations, we used five net-
works among the SMAP core validation sites (Colliander et al., 2017). 
For the watershed networks, we used SM data managed by the United 
States Department of Agriculture Agricultural Research Service (ARS), 
selecting data for the study period (2015–2019). The networks chosen 
were Walnut Gulch (WG; site ID: 1601), Little Washita (LW; site ID: 
1602), Fort Cobb (FC; site ID: 1603), Little River (LR; site ID: 1604), and 
Reynolds Creek (RC; site ID: 401) (blue stars in Fig. 3). Each of these 
networks measures SM data at a depth of 5 cm and consists of spatially 
intensive SM stations containing 15–30 ground-based SM observations 
per network. 

3. Methodology 

3.1. Removing climatology SSM data 

Prior to performing the TCA, we removed monthly signals by sub-
tracting the climatology from each SSM data set. The climatology of 
each SSM product can be correlated and thus cause the TCA-based 
numbers to be over-graded. In computing the TCA and conventional 
error metrics, each product's anomaly was considered. The anomaly 
SSM (SSMa) data was calculated using the following Eq. (1): 

Fig. 3. Locations of dense (blue stars) and sparse (black circles) SM stations with IGBP-based land cover classifications as background. The ground observations are 
those which were commonly available for all four satellites, and only two model-based products were considered. Five ARS core sites were used, and 180 ISMN 
stations (red filled circles) met the conditions required for the current research. The majority of stations are concentrated in CONUS and European countries. The 
number of ISMN stations shown above represents the stations that passed the quality control and cross-screening processes. (For interpretation of the references to 
colour in this figure legend, the reader is referred to the web version of this article.) 
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=SSM doy year SSM doy year SSM month year( , ) ( , ) E[ ( , )]i j
a

i j i j( , ) ( , ) ( , ) (1) 

where doy is day of year, i and j indicate the location of the target pixel. 
E[•] calculates the expectation of each specific year's monthly averaged 
SSM value corresponding to its day of the year. 

3.2. Triple collocation error estimators 

In the present study, TCA was employed to evaluate satellite and 
model-based SSM data. The main reason for using TCA is that it does 
not require the assumption that the reference data sets are of high 
quality (Dong and Crow, 2017; Gruber et al., 2016; Stoffelen, 1998) and 
allows estimation of the total error variance of three independent SSM 
measurements. In TCA, the errors of SSM data sets are assumed to be 
mutually independent and orthogonal to the truth (Yilmaz and Crow, 
2014). Based on this consideration, SSM products that might contain 
cross-correlated errors were not used in the same triplet. From the 6 
SSM products, 20 triplets were considered possible (6C3), and 10 triplets 
were possible for each product (Table 1). However, different triplets 
had the potential to violate the basic TCA assumptions for various 
reasons: 1) Sampling time mismatch can occur among satellites. For 
example, ASCAT and SMAP would have little difference in overpass 
time (9:30 am and 6:00 am); however, ASCAT and AMSR2 have sig-
nificantly different overpass times (9:30 am and 1:30 am); thus differ-
ence in overpass time violates the TCA assumption that all data sets 
depict the same physical variable (flag 1). The ERA5 and GLDAS data 
sets were reconstructed from UTC time-based to local time-based in 
order to match the ASCAT, SMAP, SMOS, and AMSR2 local overpass 
times. These reconstructions were performed by considering the navi-
gational time zone based on longitude and by neglecting local statutory 
deviations (Kim et al., 2018). 2) A sampling depth mismatch is obvious 
for all products. It is assumed that longer wavelength-based SSM re-
trievals represent deeper layers of soil; however, with different vege-
tation, moisture, and vegetation conditions, the representation depth 
can vary (please refer to Section 4.1 for further details). In addition, we 
used GLDAS 0–10 cm SSM, which may not represent the same soil layer 
as the other data sets, thereby violating the basic assumption of TCA 
that all data sets depict the same physical variable (flag 2). 3) If SSM 
were retrieved from a similar wavelength, error characteristics that are 
related to that wavelength could be correlated; for instance, L-band is 
more sensitive to RFI (flag 3). 4) If a similar retrieval algorithm for SSM 
was used, the final product could be highly correlated; for instance, 
SMAP and AMSR2 both use a radiative transfer model (Konings et al., 
2011) (although the details vary to a certain degree) as a passive mi-
crowave system (flag 4). 5) Simultaneous use of both model-based 
products can be risky. There are differences between off-line and cou-
pled land surface models; however, the simultaneous use of both model- 
based products may imperil the mutual error independence results 
underlying the application of TCA (flag 5). 6) If a product is combined 
or assimilated into another system, the two data sets should not be 
considered together. For example, the ASCAT SSM data were assimi-
lated into ERA5; therefore, considering the triplet of SMAP, AMSR2, 
and ERA5 rather than the triplet of SMAP, ASCAT, and ERA5 triplet is 
important to avoid cross-correlations of ASCAT and ERA5 products 
(flag 6) (please refer to Section 4.1 for further details). In this study, we 
considered all triplets in which the sum of the flags was less than 5 
(final column in Table 1) and calculated the median and standard de-
viation of TCA-based numbers for each product. 

3.2.1. Relative error variance 
In order to evaluate and intercompare the error variances of four 

satellites and two model-based SSM data sets based on the TCA, we 
calculated relative error variance rather than absolute error variance. 
Calculation of the relative error variance is a rescaling process that uses 
one product as a reference and scales the other two products to the 
reference product. This allows accommodation of the different units 

and SSM sensitivities of the various products, thus overcoming the 
dependency of scaled error variance patterns on the spatial climatology 
of the chosen reference product (Draper et al., 2013; Gruber et al., 
2016). 

The three independent, spatially and temporally collocated SSM 
data sets which are shown in Table 1 are assumed to be linearly related 
to the true signal (θ) as follows: 

= + +x ba x xx

= + +y ba y yy (2)  

= + +z ba z zz

where ax, ay, and az are systematic multiplicative biases (or scaling 
factors), and bx, by, and bz are additive biases with respect to the θ, 
respectively. The εx, εy, and εz, represent the random error of each 
product. 

We derived the error variance from a covariance notation (Gruber 
et al., 2016). This approach uses the variances and covariances of data 
sets. The notation for the error model described in Eq. (2) is considered 
to be the sum of two random variables, θ and εi. The variance and 
covariance of the SSM data sets can be described as follows: 

= + +aa 2i i i
2 2 2 2

i i (3)  

= + + +a a a aij i j i
2

j i j i j (4) 

where i,j ∈ [x, y, z] (i ≠ j). σi
2, σij, and σθ

2 are variance, covariance, and 
variance of the true jointly observed SSM data signal, respectively. 
Under the assumption of error orthogonality and zero error-cross cor-
relation, the terms σθεi and σεiεj (i ≠ j) are equal to 0. Thus, Eqs. (3) and 
(4) are simplified into the following: 

= +ai i
2 2 2 2

i (5)  

= a aij i j
2 (6)  

By combining the covariance of each product, the aiaj, which is also 

Table 1 
Possible triplets and corresponding flags and flag sum values.         

Triplets Flags Flag sum 

x y z  

1 ASCAT SMOS AMSR2 1 1 
2 SMOS AMSR2 ERA5 1 1 
3 ASCAT SMOS SMAP 2 2 
4 ASCAT SMOS GLDAS 2 2 
6 ASCAT SMAP GLDAS 2 2 
7 ASCAT AMSR2 GLDAS 1,2 3 
8 SMOS AMSR2 GLDAS 1,2 3 
9 SMOS SMAP ERA5 3 3 
10 AMSR2 SMAP ERA5 1,2 3 
11 ASCAT AMSR2 SMAP 1,4 5 
12 SMOS SMAP GLDAS 2,3 5 
13 ASCAT SMAP ERA5 6 6 
14 ASCAT SMOS ERA5 6 6 
15 SMOS AMSR2 SMAP 1,2,3 6 
16 ASCAT AMSR2 ERA5 1,6 7 
17 SMOS ERA5 GLDAS 2,5 7 
18 AMSR2 SMAP GLDAS 1,2,4 7 
19 AMSR2 ERA5 GLDAS 2,5 7 
20 SMAP ERA5 GLDAS 2,5 7 
21 ASCAT ERA5 GLDAS 2,6 8 

Flags: 
1: sampling time mismatch. 
2: depth mismatch. 
3: similar frequency band for SSM retrievals. 
4: similar SSM retrieval algorithm based on similar radiative transfer models. 
5: simultaneous use of both model-based products. 
6: ASCAT assimilated into ERA5.  
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called the sensitivity of SSM, can be estimated: 

=ax
2 2 xy xz

yz

=ay
2 2 yx yz

xz (7)  

=az
2 2 zx zy

xy

By substituting ai
2σθ

2 in Eq. (5) with the covariance term of the 
three data sets shown in Eq. (7), the error variance (σεi

2) of each data set 
can be calculated without knowing the true value of SSM: 

=2
x
2 xy xz

yz
x

=2
y
2 yx yz

xz
y (8)  

=2
z
2 zx zy

xy
z

To estimate the relative error variance, we calculated the fractional 
mean-square-error MSE (fMSE) metric (Draper et al., 2013). Draper 
et al. (2013) originally introduced the fractional root-mean-square- 
error (fRMSE), and Gruber et al. (2016) used fMSE in their study for 
reasons of consistency. The lower/higher the fMSE values, the more 
precise/noisier signal from the SSM products with the noise ranging 
from 0 to 1. A value of fMSE lower than 0.5 indicates that the SSM 
signal was stronger than its noise. The fMSE can be calculated from the 
variance and (Eq. (9)): 

= =
+

=
+

fMSE
SNRa

1
1i

i i

2

2

2

2 2 2
i i

i (9) 

where i,j ∈ [x, y, z] (i ≠ j), and SNR is the signal-to-noise ratio ai
2

2

i
2 . 

Investigating the individual SSM product's sensitivity with its own 
noise variance provides a strong advantage over absolute error esti-
mations. To be specific, the fMSE allows investigation of an actual data 
set's data quality and also removes the dependency of error patterns 
from the reference data (Gruber et al., 2016; Su et al., 2014a). 

To ensure the robustness of our results, we did not perform TCA 
when the correlation of any two products was lower than 0.3 and when 
we had fewer than 100 data samples. We calculated the median and 
standard deviations of the fMSEi from each product's possible triplets 
when the flag sum was less than 5 (Table 1). The higher the standard 
deviation of the fMSE, the less robust the TCA-based results. We con-
sidered pixels in which the standard deviation of the fMSE was greater 
than 0.2 as having non-robust TCA-based results. 

3.3. Conventional error estimators 

In addition to TCA-based fMSE, the performance of each SSM data 
was investigated by conventional four metrics using in-situ SM data sets 
described in Section 2.5: 

=biasConventional E[( )] (10)  

=fMSEConventional E[( ^ ) ]
E[( ^ E[ ^] )]

2

2 (11)  

=ubRMSEConventional E[(( [E( )]) ( E[ ])) ]2 (12)  

=RConventional E[( [E( )])( E[ ])]
E[( E[ ]) ] E[( E[ ]) ]2 2 (13) 

where E[•] computes the expectation value, represents the SSM from 
satellite- or model-based SSM, and θ is the SSM obtained from in-situ 

observations. 
Since we have limited ground stations that provide SM globally, we 

will compare TCA-based fMSE with the conventional metrics to confirm 
the feasibility of TCA-based fMSE for the global-scale SSM error esti-
mators (Section 4.2). The in-situ SSM data were obtained from a few 
dense in-situ core sites in CONUS and sparse sites from ISMN as de-
scribed in (Section 2.5). 

4. Results and discussion 

4.1. Detailed investigations of flags 

In Section 3.2, we assigned lower flag values for violation of TCA 
assumptions caused by 1) sampling time mismatch, 2) depth mismatch, 
and 3) similar frequency bands for SSM retrievals because these parti-
cular violations are inevitable with current satellite SSM retrieval sys-
tems. Specifically, satellites in sun-synchronous orbits provide only one 
to two SSM observations per day at certain overpass times; and for the 
satellite-based SSM products used in this study, SSM retrievals were 
available only from the L-, C-, and X-bands. Mathematically, for 1) and 
2) flags, depth mismatch and sampling time mismatch would cause a 
nonorthogonal error (ζ), which would impact the scales of the total 
error variances (Dong and Crow, 2017). If we assume the three zero 
mean anomaly SSM data, x, y, z, and x data with different depth (or 
overpass time), the error models can be described as follows: 

= +x +a ( ) xx

= +y a yy (14)  

= +z a zz

Under the TCA assumptions, which state that the error of three 
products is mutually independent and orthogonal to the true data, the 
ratio of scaling factors for anomalies x and y SSM data can be calculated 
as follows (Dong and Crow, 2017; Draper et al., 2013): 

= =x z
y z

a a
ay

T

T
x

y (15)  

= =x y
y z

a a
az

T

T
x

z (16) 

where σθ
2 is the variance of the true SSM. The total error covariances of 

anomaly y and z SSM data are estimated as follows: 
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+ + +
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+
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(17)  

where i, j ∈ [y, z] (i ≠ j), and E[•] computes the expectation value, 
and σζθ is the covariance of the true SSM (combined with the non-
orthogonal error). Under the assumption of the zero mean error, Eq.  
(17) is the same as 1/ai

∗2σεi
∗2.This is equivalent to the result of Dong 

et al. (2017). The fMSE of y and z with the existence of nonorthogonal 
errors can be calculated as follows: 

= =fMSE
i

i
i

1
a

2

1
a

2

2

2
i i

i

i
2

2 (18) 

where i, j ∈ [y, z] (i ≠ j). This equation is the same as Eq. (9) above. At 
the same time, the fMSEx can be biased due to additive bias caused by 
the nonorthogonal error. Specifically, the total error variance of 
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anomaly x data under the assumption that the error of the three pro-
ducts is mutually independent and orthogonal to the truth can be cal-
culated as follows: 

= + + + +

= + +c a a a a a

x y x zE[( a ) ( a )]

(a a )(a a ) (a a )a (a a )a a

(a a )(a a ) (2 ) ax x y x z

y z

y z x y x x z x x

y z x

T

x x
2 2 2 2

2
x x

2 2 2 2
x

x (19) 

where x, y and z are the anomaly SSM data sets. The fMSE of x data 
with the existence of the nonorthogonal errors can be calculated as 
follows: 

This equation shows that with the existence of the nonorthogonal 
errors, fMSEx will be biased. Thus, the error caused by the non-
orthogonal errors such as depth mismatch would affect the fMSEx. 

Analytic calculations and quantifications of possible bias caused by 
the violation of TCA assumptions are challenging tasks. Specifically, 
violations of flags 4, 5, and 6 can certainly cause errors beyond the 
nonorthogonal error. However, the violations classified in flags 4, 5, 
and 6 are distinguishable violations that the researcher can clearly 
avoid; thus, these flags should not be deliberately ignored. Therefore, 
we assigned higher flag values to penalize triplets, which are regarded 
as intentional violations of TCA assumptions. Composing triplets with 
two model-based SSM values (x and y) (e.g., Noah- 
Multiparameterization (NoahMP)3.6 and NoahMP4.0 (flag 5)) of the 
same forcing variables (e.g., MERRA-2 forcing) and satellite-based SSM 
(z) would greatly degrade the performance of z data. The relative total 
error variance of x and y data is very likely to be biased. Similarly, TCA 
metrics from a triplet of SSM data taken from LSMs (x) without data 
assimilation (DA) of satellite SSM data (y) (i.e., open-loop LSM's SSM), 
satellite-based SSM which is assimilated in x, and third SSM data (z) 
(flag 6), would be biased. 

In order to demonstrate the possible fMSE bias that can be caused by 
violations of the TCA assumptions marked as flags 6, we assimilated 
SMAP SSM data into NoahMP3.6 using LIS (Kumar et al., 2006) and 
conducted TCA. Fig. 4 shows the difference between the fMSE values 
for NoahMP36, SMAP, and ASCAT calculated from two different tri-
plets: 1) open-loop NoahMP3.6, SMAP, and ASCAT SSM data, and 2) 
SMAP assimilated NoahMP3.6, SMAP, and ASCAT SSM data sets. The 
positive (negative) value indicates the data performance is overvalued 
(undervalued) due to the combination of SMAP assimilated NoahMP36 
and SMAP data in composing a triplet. Fig. 4 clearly demonstrates that 
if we violate the TCA assumption indicated as flag 6 (Section 3.2), the 
fMSE values of NoahMP3.6 (x) and SMAP (y) are likely to be over-
valued and ASCAT (z) is likely to be undervalued as SMAP data is as-
similated into NoahMP36. In addition, just as we avoided composing 
triplets with ASCAT and ERA5 data, we did not consider ESA-CCI SSM 
merged products in this study (Dorigo et al., 2017). Since ESA-CCI 
merges ASCAT, SMOS, and AMSR2 SSM data, triplets composed of ESA- 
CCI and the two satellite-based SSM data sets used in this study would 
cause bias in TCA-based numbers. In other words, it would violate the 
TCA assumption that the errors of the three products are mutually in-
dependent (Draper et al., 2013). 

4.2. Evaluation of SSM satellite- and model-based products using in-situ SM 
networks and viability of TCA-based median fMSE for global-scale error 
analysis 

In this section, we compared the TCA-based fMSE with four con-
ventional error estimators (i.e., bias, fMSE, correlation coefficient R, 
and ubRMSE) which were calculated for each SSM product (i.e., ASCAT, 
SMOS, ASMR2, SMAP, ERA5, and GLDAS). The goal of employing 
spatially intensive SM observations core sites is to investigate the fea-
sibility and reality of TCA-based fMSE in comparison to conventional 
relative evaluation metrics and absolute evaluation metrics. Dense 

watershed networks can be used to calculate absolute error metrics as 
they are composed of 15–60 ground observations per watershed site. 
Thus, the representative error caused by the spatial resolution mis-
match between point-scale observations and gridcell-scale SSM re-
trievals can be minimized by weighting the SM stations based on the 
Voronoi diagram technique and arithmetic average (Colliander et al., 
2017; Crow et al., 2012). Many previous studies have used such dense 
ground SM observation data and up-scaling approaches to evaluate 
remotely-sensed and model SSM data sets (Chen et al., 2017; Colliander 
et al., 2017; Dong et al., 2020). However, the limited number of dense 
networks hampers the evaluation of gridcell-scale SSM data from di-
verse environmental conditions. Thus, researchers use data from sparse 
SM networks to evaluate the error characteristics of satellite and model 
SSM data sets until more networks with different conditions are avail-
able. These networks are often called “sparse” because they are usually 
not spatially distributed with small number of ground observations for a 
gridcell-scale, although the large number of sites in a network com-
pensate for the sparse distribution of ground observations (Al-Yaari 
et al., 2019b; Brocca et al., 2011; Dorigo et al., 2011, 2013; Kim et al., 
2018). Despite the degradation of absolute evaluation metrics caused 
by representative errors in sparse networks, Dong et al. (2020) analy-
tically demonstrated that representative errors do not impact the re-
lative accuracy assessment of SSM derived from different gridcell-scale 
SSM data sources. For these reasons, for the sparse network location, we 
compared TCA-based fMSE with R-values calculated from ISMN SM 
data sets. 

Fig. 5 shows the comparison results between the TCA-based fMSE 
(red boxes with left y-axis) and conventional fMSE (blue boxes with 
right y-axis) calculated from the SM data obtained with dense ground 
observations. In Fig. 5(a), it is clear that the TCA-based fMSE results are 
very similar to the ground-based fMSE calculations. It is worth noting 
that in-situ-based fMSE is theoretically higher than TCA-based values as 
in-situ SSM MSE is lower than satellite- or model-based MSE, which 
leads to a positive bias in conventional fMSE. Likewise, the TCA-based 
fMSE shows lower values (less noisy data) for higher R-value (less noisy 
data) data sources. These results are very encouraging as they show the 
strong feasibility of TCA-based metrics for assessment of relative error 
characteristics from different SM data sources. Fig. S1 is the same as  
Fig. 5(b), except that, the conditional R-values were calculated based on 
the 180 ground stations from ISMN (bias and ubRMSE results are dis-
cussed in Section 4.4.). It is interesting to note very similar results are 
obtained in terms of TCA-based fMSE considering dense (Fig. 5(b)) or 
sparse (Fig. S1) SSM networks. 

Fig. 4. (a) Difference between fMSE value of NoahMP3.6 calculated from the two different triplets: 1) fMSE of open-loop NoahMP3.6, SMAP, and ASCAT and 2) fMSE 
of SMAP assimilated NoahMP3.6 + SMAP, SMAP, and ASCAT. (b) same as (a) but for fMSE value of SMAP. (c) same as (a) but for fMSE value of ASCAT. The positive 
(negative) value indicates the fMSE is overvalued (undervalued) if the TCA assumption violation type falls under flag 6 (Section 3.2). 
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This figure is once again consistent with the assertion that TCA- 
based fMSE is a robust method for error characterization and the in-
tercomparison of SSM data sets from different sources over various 
gridcell-scale locations. 

The importance of TCA-based error evaluation becomes even more 
apparent when we investigate the gridcell-scale irrigation percentage 
and VOD ranges of SM networks in dense and sparse locations (please 
refer to Table S1 for detailed information about each station used in this 
study). Fig. S2 shows a histogram of ground station locations with re-
spect to different gridcell-scale irrigation percentages and VOD values. 
It is clear that most of these SM stations are located within pixels 
composed of ~9% irrigated land. However, even though there are in- 
situ stations located within irrigated gridcells, these stations are not 
usually located in irrigated farmlands; thus, they cannot capture the SM 
variability caused by actual irrigation activities. It follows, then, that 
long-term observations of SM over irrigated areas using ground stations 
are impossible because installing ground stations in irrigated farmland 
is very difficult over the long term. In contrast, in-situ stations are a 
viable option across a wide range of VOD values. However, these sta-
tions are most often located outside forests or in an open sapce within a 
tree stand and thus they do not capture the SM variability caused by the 
micrometeorology of the forest canopy. It is true that we have five 
cosmic-ray neutron probe (CRNP) stations which can overcome the 
limitations of ground measurement SM made using Time Domain 
Reflectometry, Frequency Domain Reflectometry, Transmission Line 
Oscillation, etc. methods (Kim et al., 2020; Nguyen et al., 2017); 
however, CRNP is relatively expensive, and the small number of CRNP 
stations also limit the use of this method in monitoring global-scale SM 
variability. Thus, we conclude that global-scale monitoring of SSM re-
quires both satellite- and model-based SSM estimation, and that TCA is 
a critical method of evaluating these data sets. 

All the results shown in this section confirm the feasibility and ro-
bustness of the TCA-based error metric for global-scale error evalua-
tions of satellite- and model-based SSM data because it shows sig-
nificantly similar performance to conventional error estimators. 

4.3. Global-scale spatial patterns and inter-comparison of soil moisture data 
using TCA 

Fig. 2 shows the global distribution of average SSM retrieved from 
(a) ASCAT, (b) SMOS, (c) AMSR2, (d) SMAP, (e) ERA5, and (f) GLDAS 
data sets from 2015 to 2019. The inset probability density function 
(PDF) and longitude and latitude zonal averaged SSM graphs clearly 
show that each satellite retrieval or model-based data has its own 

distinctive spatial patterns of SSM. However, SMOS and SMAP showed 
very similar spatial patterns. Satellite-based SSM products and GLDAS 
show right-skewed (positively skewed) distribution, while ERA5 SSM 
exhibits a multimodal distribution. 

Theoretically, the lower frequency bands of SMAP and SMOS should 
be better at penetrating vegetation than ASCAT and AMSR2, while SSM 
retrieval from dense forest areas is possible but limited (Burgin et al., 
2017). A recent study also found that SMOS-IC showed meaningful SSM 
values over the Amazon basin (Li et al., 2020). By contrast, the model- 
based data sets can reproduce SSM data sets over highly vegetated 
areas. Overall, as expected, the satellite and model-based mean SSM 
values of the different climates demonstrate patterns similar to those of 
arid climates; i.e., they have relatively low SSM values (e.g., the Sahara 
Desert); or of tropical climates, meaning relatively high SSM values 
(e.g., the Andean Mountains). AMSR2 showed relatively high SSM la-
titude over 40 degrees, and it showed low SSM over tropical areas 
where VOD was higher than 0.6. These results indicate that low-quality 
AMSR2 SSM data has not been properly filtered by current data quality 
flags. 

Based on the PDF results in each figure in Fig. 6, SMAP showed the 
best performance among all products. SMOS showed the best perfor-
mance over Australia and similar performance to SMAP over the con-
tiguous United States, while ASCAT showed similar performance to 
SMAP over European countries. AMSR2 showed the worst results over 
South America and Africa, but SMOS-IC also showed unanticipatedly 
high fMSE results. Considering that the regional patterns of the accu-
racy of SMOS-IC depend on RFI, unexpected relatively high fMSE spa-
tial patterns were found in the SMOS-IC data over Africa and to a lesser 
extent over South America as RFI sources are relatively limited over 
these areas (SMOS RFI sources are mainly found in southern Europe, 
northern and eastern regions of Africa, India, central and southern re-
gions of China). SMOS-IC is completely independent of ancillary data, 
while other products are strongly dependent on vegetation conditions, 
which can cause a strong autocorrelation among products due to an-
cillary data related to optical vegetation indices. However, we assumed 
that this impact was mitigated after considering all possible triplets and 
calculating the median of fMSE (more discussion is included in Section 
4.4). Further investigations regarding the impact of vegetation on TCA 
will be conducted in future studies since it is out of scope for the current 
manuscript. Further discussions with respect to different levels of ve-
getation and irrigation activities and dependencies of TCA with respect 
to different triplets are included in the next section (Sections 4.4–4.6). 

Fig. 5. (a) Boxplots of the TCA-based fMSE (Eq. (9)) (red; left y-axis) and the conventional fMSE (Eq. (11)) (blue; right y-axis) for ASCAT, SMOS, AMSR2, SMAP, 
ERA5, and GLDAS. (b) Boxplots of the TCA-based fMSE (Eq. (9)) (red; left y-axis) and the conventional correlation coefficient (R) value (Eq. (13)) (blue; right y-axis) 
for ASCAT, SMOS, AMSR2, SMAP, ERA5, and GLDAS. Conventional metrics were calculated using dense SM ground observations. (For interpretation of the re-
ferences to colour in this figure legend, the reader is referred to the web version of this article.) 

H. Kim, et al.   Remote Sensing of Environment 251 (2020) 112052

12



4.4. Error characteristics of soil moisture data over forest regions 

The plots in Fig. 7 show the histograms and cumulative distribution 
of median fMSE with respect to different vegetation conditions (blue 
bars and lines: sparsely vegetated regions, red bars and lines: moder-
ately vegetated regions, and yellow bars and lines: densely vegetated 
regions) for four satellites and two modeled data sets corresponding to 
data obtained in Fig. 6. The FfMSE(0.5) value of each plot indicates the 
probability of SSM data having an SSM signal stronger than its noise.  
Table 2 shows the results of FfMSE(0.5) for different products in terms of 
different vegetation conditions. 

We found that over densely forested areas, ASCAT, SMOS, and 
SMAP data showed relatively higher FfMSE values than model-based 
SSM products (Table 2): FfMSE(0.5|Dense) was 0.8038, 0.6657, and 
0.9840, respectively. ASCAT showed similar accuracy over densely 
vegetated areas as over sparsely and moderately forested areas. One 
plausible explanation for the good accuracy of ASCAT SSM retrievals 
might be increased backscatter due to vegetation matter. When Frison 
and Mougin (1996) investigated signatures from the European Remote 

Sensing (ERS) backscatter coefficients with respect to the vegetation 
dynamics obtained from optical vegetation indices, they found that 
backscatter coefficients were highly sensitive to seasonal vegetation 
dynamics. This was mainly due to the natural high correlation between 
vegetation dynamics and increases in SSM (Al-Yaari et al., 2014b). 
ASCAT SSM may also gain benefits from intercepted water on the ve-
getation canopy, which could increase backscatter and contribute to the 
creation of an artificial SSM signal. Thus, increased backscatter could 
simultaneously aid in capturing SSM variations over densely forested 
areas. These vegetation-related phenomena make it very difficult to 
decouple the contributions of variation in SSM and plant phenology 
from variations in the backscatter coefficient (Wigneron et al., 1999a, 
1999b). However, although variation in vegetation dynamics and SSM 
is not always in harmony in many climate regions, the overall perfor-
mance of ASCAT SSM as indicated by TCA-based fMSE showed good 
results. These results indicate that we can expect an active system (i.e., 
ASCAT) to perform well in monitoring SSM over forest areas, and our 
result aligns well with Al-Yaari et al. (2014b). However, dedicated re-
search efforts and experiments in future studies would be necessary to 

Fig. 6. Maps of median fMSE of (a) ASCAT, (b) SMOS, (c) AMSR2, (d) SMAP, (e) ERA5, and (f) GLDAS. Upper and right panels indicate longitude and latitude zonal 
means of median fMSE, respectively. Inset graphs represent PDF for each data set, marker sizes in zonal plots illustrate proportional to zonal land area, and the 
shaded region shows ± 1 standard deviation. 
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provide solid evidence to support the above hypothesis. 
In addition, over densely vegetated regions, L-band based (i.e., 

SMAP and SMOS) SSM estimations are expected to perform better than 
the X-band frequencies of passive sensors (i.e., AMSR2). This is because 
higher microwave bands are easily attenuated by vegetation, making X- 
band-based AMSR2 LPRM SSM measurements relatively insensitive to 
SSM variability. In other words, AMSR2 SSM estimations over forest 
regions are expected to have a noise variance (σε

2) higher than the 
estimated SSM variance (σ2) indicated by the FfMSE(0.5|Dense) value, 
which is lower than 0.5 (Eq. (9)) in Table 2. However, SMOS showed a 

lower value FfMSE(0.5|Dense) than SMAP. 
Several interesting features were also found in the model results: the 

model-based ERA5 and GLDAS data showed lower FfMSE(0.5|Dense) 
values than those of the ASCAT, SMOS, and SMAP products, having 
FfMSE(0.5|Dense) of 0.4917 and 0.2056, respectively. This result is en-
couraging because it indicates that satellite-based SSM in forested areas 
that have passed quality control processes can provide added value in 
model-based products and thus improve the prediction skills of model 
data through data assimilation (DA) having high SNR. In areas with 
highly vegetated conditions where active and passive microwave-based 
soil moisture data are masked out due to low data quality (Fig. 2), 
model-based SSM could provide SSM. However, if the model data show 
high errors, researchers may have to consider other options. For ex-
ample, researchers need to decide whether they will use model-based 
data with low-quality SSM data and risk some uncertainty, or whether 
they need to consider other sources of SSM data such as the Atmo-
spheric Land Excange Inverse (ALEXI) model-based or Gravity Recovery 
and Climate Experiment-retrieved (GRACE), observationally-driven 

Fig. 7. Probability histogram and CDF of fMSE values for (a) ASCAT, (b) SMOS, (c) AMSR2, (d) SMAP, (e) ERA5, and (f) GLDAS over sparsely vegetated regions (blue 
bars and lines), moderately vegetated regions (red bars and lines), and densely vegetated regions (yellow bars and lines) calculated from the TCA. (For interpretation 
of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Table 2 
FfMSE(0.5) values over sparse, moderate, and dense vegetation conditions.         

Vegetation ASCAT SMOS AMSR2 SMAP ERA5 GLDAS  

FfMSE(0.5|Sparse) 0.7839 0.5523 0.3439 0.9450 0.3441 0.1965 
FfMSE(0.5|Moderate) 0.7562 0.5981 0.3787 0.9534 0.4465 0.1971 
FfMSE(0.5|Dense) 0.7527 0.5700 0.3891 0.9508 0.4917 0.2056 
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SSM data (Anderson et al., 2007; Sadeghi et al., 2020). 
Furthermore, over sparsely and moderately vegetated areas, ASCAT, 

SMOS, and SMAP outperform other products (Table 2). For all vege-
tation conditions, AMSR2 showed lower FfMSE(0.5) values than ERA5. 
The AMSR2 C-band frequencies-based SSM product could provide 
better quality SSM data than the X-band, especially over vegetated 
areas, since the C-band can penetrate more deeply than the X-band. In 
the present study, for a robust TCA, we selected the X-band (Section 
3.2) AMSR2 product; however, considering C-band AMSR2 SSM data 
for different triplets could provide different results. For sparsely vege-
tated areas (FfMSE(0.5|Sparse)), SMOS and AMSR2 SSM products 
showed slightly degraded performance compared to moderately vege-
tated conditions (FfMSE(0.5|Moderate)). Furthermore, ASCAT has a 
well-known issue when used in its capacity as an active sensor: it ap-
pears to be very sensitive to sub-surface heterogeneities and surface 
roughness due to unpredictable volume scattering from deeper soil 
layers over dry surfaces, resulting in a wet bias in ASCAT-based SSM 
estimates (Morrison and Wagner, 2019). However, in our study ASCAT 

did not show significant degradation of performance over sparsely ve-
getated areas because these areas did not include a high fraction of sand 
due to our masking out of desert and barren areas based on IGBP data. 

GLDAS data showed the lowest FfMSE of all products. Two plausible 
reasons for its low TCA-based numbers is depth mismatch (0–10 cm) 
with satellite products (Section 4.1). Currently, the GLDAS Noah model 
provides SSM estimates at 0–10 cm soil layer (the topsoil layer), so a 
more proper comparison of GLDAS SSM TCA results can be performed 
with shallow-layer SSM simulations in a future study. Beck et al. (2020) 
also reported that, of the six model-based SSM data products, GLDAS 
produced the poorest results due to the quality of its precipitation 
forcing data. Fig. S1 shows a comparison of TCA-based fMSE and the 
conventional-R value calculated using SM data from the ISMN SM data, 
and Figs. S3 shows a comparison of TCA-based fMSE and the absolute 
error metrics (i.e., bias and ubRMSE) calculated using SM data from the 
USDA ARS core sites. The results show that the performance of GLDAS 
based on the results of relative and absolute errors are better than the 
TCA-based fMSE. This result might be due to the installation depths of 

Fig. 8. Probability histogram and CDF of fMSE values for (a) ASCAT, (b) SMOS, (c) AMSR2, (d) SMAP, (e) ERA5, and (f) GLDAS over barely irrigated areas (blue bars 
and lines), moderately irrigated areas (red bars and lines), and actively irrigated areas (yellow bars and lines) calculated from the TCA. (For interpretation of the 
references to colour in this figure legend, the reader is referred to the web version of this article.) 
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SM sensors: we used ground-based SM data collected at near surface to 
10 cm soil depths. 

It is also important to note that none of the areas considered sparse, 
moderate, or densely forested included any croplands or irrigated re-
gions (please refer to Sections 2.1 and 2.2); all the results currently 
obtained are assumed to be independent of irrigation activities. 

4.5. Error characteristics of soil moisture data over irrigated regions 

The plots in Fig. 8 show the same results as in Fig. 7, but for dif-
ferent irrigation conditions (blue bars and lines: barely irrigated areas, 
red bars and lines: moderately irrigated areas, yellow bars and lines: 
actively irrigated areas) for four satellites and two model-based data 
sets corresponding to data obtained in Fig. 8. Table 3 shows the results 
of FfMSE(0.5) for different products in terms of different irrigation 
conditions. 

For all irrigated conditions, SMAP showed the highest FfMSE(0.5) of 
the various products we tested; and ASCAT, SMOS, and SMAP showed 
better performance over actively irrigated areas than data from the two 
models. However, AMSR2 showed lower FfMSE(0.5) than ERA5 over all 
irrigation conditions (Table 3). One more interesting result is that the 
results from ERA5 were comparable to SMOS over barely and moder-
ately irrigated conditions. Tuinenburg and de Vries (2017) also found 
that reanalysis data can indirectly include irrigation schemes by as-
similating 2-m temperature observation data; this is due to irrigation 
activities significantly impacting the atmosphere, and the reanalysis 
system consequently responding to SM variability. In addition, it is 
worth noting that ASCAT data was assimilated into ERA5; thus, ERA5 
could include irrigation schemes. This result emphasizes the difficulty 
in determining whether satellite-based data is always a better alter-
native than model-based data over these regions, since SMOS and 
AMSR2 may produce more errors than ERA5. It is worth noting that 
ASCAT, SMOS, SMAP, and ERA5 show degraded performance as irri-
gation activities increase. The results of higher errors in SMOS-IC SSM 
data over irrigated areas may also be related to RFI. The areas of irri-
gation correspond well with RFI regions, especially for SMOS (high 
SMOS RFI and irrigation levels can be found simultaneously in India 
and China). This result emphasizes the careful use of SSM data which 
were retrieved from lower frequency systems for agricultural applica-
tions. Considering the results showing that ASCAT, SMOS, SMAP pro-
duce fewer errors than models over most irrigation conditions, satellite 
data have a strong potential to provide meaningful signals for DA when 
they are assimilated into LSMs. 

Overall, these results emphasize the importance of considering 
several satellite and model data sources when SSM products are inter-
compared. In extreme cases, wrong conclusions may be reached if data 
from only two satellites (e.g., SMOS and AMSR2) are compared with 
data from one model (e.g., ERA5). For instance, these triplets for TCA 
over barely irrigated areas could lead to the incorrect conclusion that 
model-based SSM data are better than satellite-based data over irrigated 
areas. A similar erroneous conclusion could be reached if only ASCAT 
and SMAP data are compared with model products. For instance, sa-
tellite-based SSM may be assumed to perform better than model-based 
SSM; but this finding is erroneous, as we can see when we compare the 
results of AMSR2 and ERA5 (or GLDAS). 

4.6. Dependency of the different triplets on the TCA 

In this study, we first introduced the use of several TCA triplets for 
one product in order to overcome the limitation of choosing the triplets 
to calculate robust TCA-based numbers, mitigating the violations of the 
basic TCA assumptions. Fig. 9 shows maps of the standard deviations of 
fMSE (hereafter std.(fMSE)) values for the SSM data from each satellite 
(calculated from the triplets in which the flag sum was less than 5). 
These maps illustrate how the fMSE value for each pixel is spread out; 
in other words, it demonstrates the effect of testing other triplets to 

determine the variation of each product's fMSE value. One interesting 
result is that the ERA5 data produced the lowest std.(fMSE). A low std. 
(fMSE) indicates a robust TCA result. This indicates that ERA5 has re-
latively low cross-correlation with other SSM data (except ASCAT) and 
thus can be used as a strong candidate when calculating TCA-based 
numbers. The GLDAS also showed lower std.(fMSE) than satellite data 
sets. In contrast to model-based products, clear contrasts of std.(fMSE) 
were found with the satellite SSM data sets. Specifically, the areas re-
presented by red boxes showed relatively high std.(fMSE) (std 
(fMSE)  >  0.2). If satellite-based SSM data over these areas is assessed 
with only a few triplets or a single triplet, biased conclusions become 
very likely. However, it is difficult to intercompare the std.(fMSE) of all 
products over the same areas, mostly because obtaining enough quality 
data for TCA is not possible. 

4.7. Advantage of selective use of satellite and model data 

We conducted here an analysis to evaluate potential results from a 
synergetic use of satellite and model-based SSM products. In the pre-
vious sections, it was shown that over densely vegetated areas, satellite- 
based SSM data could perform better than model-based SSM data. By 
contrast, model-based SSM can perform better than certain satellite- 
based SSM products over barely or moderately irrigated areas.  
Fig. 10(a) shows a map of fMSE from a combination of four satellites 
and two model-based SSM products; we selected the lowest fMSE data 
from all products. It is clear that if we use SSM data selectively, we can 
dramatically reduce the uncertainties of SSM data on a global scale. It is 
also worth noting that by selecting from all available satellite and 
modeled data sets, we can obtain SSM data that has a stronger signal 
than its noise over forest or irrigated areas. Figs. 10(b) and 10(c) show 
that for every vegetation and irrigation condition, all FfMSE(0.5) values 
are close to 1. Furthermore, PDFs of fMSE for every condition show very 
similar distributions to one other. However, as shown in Fig. 10(a), 
many areas still cannot be investigated because it is impossible to select 
appropriate triplet components for TCA. For example, over the Amazon 
regions, the triplet should consist of two satellite and modeled or three 
satellite data sets. However, as shown in Section 4.4, it was impossible 
to obtain microwave satellite-based SSM data over very densely vege-
tated areas because low-quality data are anticipated and thus masked 
out based on quality flags. Similarly, we were unable to make appro-
priate triplets over desert areas such as the Middle East and East Asia. 
To overcome the limitation of acquiring three independent variables for 
TCA, several studies have proposed methods that use only two variables 
(Dong et al., 2019b; Su et al., 2014b). However, these approaches may 
not be appropriate for the current analysis since the SSM variable could 
have strong error auto-correlations and thus lead to significantly biased 
results. 

In this results section, we have shown four main findings: 

1) We showed that the results from TCA-based and conventional me-
trics are consistent. These results imply that TCA can be utilized to 
estimate relative errors over areas where ground-based SSM data are 
not available.  

2) We found that considering TCA statistics from a single triplet can be 
biased. This indicates that TCA from various triplets for specific data 
sets can result in more robust TCA statistics.  

3) We demonstrated that the performance of satellite-based SSM data 

Table 3 
FfMSE(0.5) values over bare, moderate, and active irrigation conditions.         

Irrigation ASCAT SMOS AMSR2 SMAP ERA5 GLDAS  

FfMSE(0.5|Bare) 0.8681 0.6688 0.1709 0.9784 0.7364 0.1698 
FfMSE(0.5|Moderate) 0.8973 0.6533 0.2764 0.9664 0.6344 0.3433 
FfMSE(0.5|Active) 0.7671 0.5266 0.2734 0.9075 0.4402 0.3512 
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should not always be regarded as less accurate than model-based 
SSM over vegetated areas; and similarly, model-based data should 
not always be regarded as more erroneous than satellite-based data 
over irrigated areas.  

4) Finally, we illustrated that selective use of satellite and model data 
dramatically improves the quality of SSM data. 

5. Conclusions 

The purpose of this study was to analyze global-scale SSM error 
characteristics with regard to the degree of dense vegetation and irri-
gation, using both satellite and model-based SSM estimates. First, we 
focused on the performance of the satellite- and model-based SSM data 
globally, then over areas generally regarded as problematic (i.e., forest 
and irrigated regions). Forest regions are considered problematic for 
remote sensing SSM estimates, as the vegetation layer attenuates the 
soil signal (the attenuation effects increasing with frequency), while 
irrigated regions are considered as problematic for model-based SSM 
products as irrigated land is too heterogeneous at the scale of current 
satellites. 

Since high-density ground-based SSM networks are limited in space, 
methods of cross-comparing two or three independent collocated SSM 
data sets have recently been developed for evaluating SSM model/re-
trieval errors on a global scale. The error characteristics of four dif-
ferent satellites and two model-based products were intercompared 
using TCA and ground SM measurements. We were able to provide new 
insights into the advantages and disadvantages of current satellite and 

model-based SSM products focused on forest and irrigated areas. We 
also showed that the choice of triplets for TCA can have a dramatic 
impact on the final results. 

Even though satellite and model-based SSM estimates showed a si-
milar spatial pattern on a global scale, the TCA results showed very 
different error patterns with regard to SSM. Interestingly, satellite- 
based SSM products performed well in predicting SSM over areas of 
high vegetation matter (to the exception of dense tropical forests) and 
also they showed high potential for predicting SSM in areas where 
unexpected signals caused by artificial changes to the land surface (i.e., 
irrigated areas) make prediction of SSM difficult for land surface 
models. In addition, ERA5 seems to include irrigation schemes through 
the assimilation of ASCAT SSM data. We discovered that no products 
we analyzed showed obvious degradation in TCA-based errors under 
different vegetated conditions; however, the degradation of both sa-
tellite and model data over irrigated areas is more obvious. The de-
gradation of SMOS is likely due to RFI in India and China. 

Selectively using multi-source SSM data according to the TCA re-
sults, we were able to obtain a SSM data set with the highest signal-to- 
noise ratio. This encouraging result indicates that global-scale, high- 
quality SSM data sets over the forest and irrigated lands –– long con-
sidered difficult regions for estimating SSM by either satellite ob-
servation or modeling techniques –– can be obtained through a com-
bination of satellite and model data sets. However, selective use of 
satellite data set still included some limitations over densely forested 
and actively irrigated areas such as China and central Africa. 

In this study, we only considered SSM products at a spatial 

Fig. 9. Maps of the standard deviation of fMSE for (a) ASCAT, (b) SMOS, (c) AMSR2, (d) SMAP, (e) ERA5, and (f) GLDAS.  
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resolution of 0.25 degrees. Future investigation of the sensitivity of 
spatial resolution to irrigation impact will require higher spatial re-
solution data from satellite and model-based SSM in order to account 
for the heterogeneity of intracell processes within a 0.25-degree 

resolution gridcell. Currently, SMAP/Sentinel combined and Sentinel-1 
SSM data are available (Das et al., 2019; Bauer-Marschallinger et al., 
2018); however, no 1-km SMOS or AMSR2 data are publicly available 
on a global scale. Even if such products become available in the near 

Fig. 10. (a) Map of fMSE of combined data. Upper and right panels indicate longitude and latitude zonal means of fMSE, respectively. Inset graphs represent PDF, 
marker sizes in zonal plots illustrate proportional to zonal land areas, and the shaded region shows ± 1 standard deviation. (b) Probability histogram and CDF of 
fMSE values for combined data over sparsely vegetated regions (blue bars and lines), moderately vegetated regions (red bars and lines), and densely vegetated regions 
(yellow bars and lines). (c) Probability histogram and CDF of fMSE values for combined data over barely irrigated areas (blue bars and lines), moderately irrigated 
areas (red bars and lines), and actively irrigated areas (yellow bars and lines). (For interpretation of the references to colour in this figure legend, the reader is 
referred to the web version of this article.) 
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future, obtaining a TCA for these products would be challenging since 
downscaled SSM products are mostly a combination of different band 
range products, and sharing similar ancillary data such as vegetation or 
temperature data from the Moderate Resolution Imaging Spectro-
radiometer (MODIS) or LSMs would violate the assumptions of TCA. 
Furthermore, we only considered specific versions of satellite and 
model-based data sets. Therefore, for instance, the SMOS data set based 
on the original Level 2 algorithm distributed by Centre Aval de Trai-
tement des Données SMOS (CATDS) may behave differently than the 
SMOS-IC data used in this study. Updated and alternate choices for 
satellite-based SSM and model-based data sets can be utilized in future 
research; thus, spatial and temporal coverage having higher-quality 
SSM estimates can be obtained over the areas which current research is 
unable to access. 

Many other factors also affect the estimation of error characteristics 
in model-based SSM data, including poor quality forcing data in GLDAS 
(and ERA5), representative depth differences, selection of triplets, etc. 
These factors may cause biased results in characterizing model-based 
SM errors. In this study, we explicitly and implicitly showed that TCA 
results can be biased if the triplets are poorly selected. It was demon-
strated that the depth mismatch between satellites (e.g., 5-cm SM from 
SMAP) and model-based data (e.g., 10-cm SM from GLDAS) can lead to 
biased TCA-based numbers because of the nonorthogonal errors. 
Furthermore, results from TCA with non-mutually independent triplets 
will result in over graded/under graded performance of the individual 
product. 

Finally, further analysis will be required in future studies, using 
higher spatial and temporal resolution SSM data from satellite data, as 
satellite footprints and temporal repeat might not fine enough to cap-
ture the irrigation signals. The new data sets for SSM from Cyclone 
Global Navigation Satellite System (CYGNSS) and the downscaled SSM 
from passive and active systems can be used for better spatial resolu-
tions and temporal repeat characterization of the land surface state. The 
new data sets for SSM from CYGNSS (Kim and Lakshmi, 2018) and the 
downscaled SSM from passive radiometers (Das et al., 2019; Fang et al., 
2018; Narayan and Lakshmi, 2008) can be used for better spatial re-
solutions and temporal repeat characterization of the land surface state. 
In addition, we only investigated the error characteristics of surface- 
level SM; however, TCA for large-scale RZSM data, such as the Global 
Land Evaporation Amsterdam Model (GLEAM) RZSM and SMAP L4 
data are also important in understanding land-atmospheric feedback 
and improving hydrologic forecasting (Crow et al., 2017; Dong et al., 
2019a; Lakshmi et al., 2011; Martens et al., 2017; Matsui and Lakshmi, 
2003; Reichle et al., 2017). 
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