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Abstract
Ground observations are critical in the validation of soil water content (SWC) esti-

mates from both satellites and land surface models. Portable SWC sensors provide

useful information to determine the amount of SWC in the topsoil layer for various

applications; however, these probes are not accurate without site-specific correction.

In the present study, we examined and compared six different types of portable elec-

tromagnetic (EM) SWC sensors, including multiple sensors made by the same man-

ufacturers, for a total of 16 EM-based SWC probes equipped with portable data log-

gers. All SWC probes met the target accuracy after onsite correction—the RMSD was

<0.025 m3 m−3. Using the two-sample t tests, we observed that SWC data obtained

from similar electrode lengths and from different manufacturers showed similar distri-

butions over time with the same mean. Furthermore, using the maximize R method to

combine SWC data from two different types of sensors increased the accuracy of the

results. When datasets from two different types of sensors were combined, the Pear-

son’s correlation coefficient (R value) and RMSD values were improved. The average

R value improved from .930 to .945, and the RMSD decreased from 0.036 to 0.018 m3

m−3. These results indicate that, along with site-specific correction, synergetic use of

multiple manufacturers’ EM-based SWC probes can improve the R value and reduce

systematic bias.

1 INTRODUCTION

Portable devices are an effective tool for measuring surface

soil water content (SWC). They can also serve as an alter-

Abbreviations: DC, direct current; EC, electrical conductivity; EM,
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OPE3, Optimizing Production Inputs for Economic and Environmental
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Analysis Network; SWC, soil water content; TDR, time domain
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content reflectometer.
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native to gravimetric sampling, as the electromagnetic (EM)

properties of soil vary according to the water content in the

soil (Topp, 2003), and these devices provide reasonably accu-

rate measurements and avoid the cumbersome collection and

drying issues related to gravimetric sampling. Over the last

several decades, many portable EM-based sensors have been

developed to estimate volumetric water content (VWC) in

porous media in an efficient manner (Birchak, Gardner, Hipp,

& Victor, 1974; Lee & Fredlund, 1984; Rowlandson et al.,

2013; Seyfried & Murdock, 2004; Singh et al., 2018; Topp,

2003; Vaz, Jones, Meding, & Tuller, 2013). Electromagnetic-

based SWC probes have shown several advantages over
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other techniques; for instance, SWC probes are less inva-

sive than gravimetric techniques, they are suitable for long-

term and continuous monitoring of SWC at specific depths,

they can be used in most surface conditions regardless of

soil types and vegetation, and they can collect SWC data

repeatedly (Abbas, Fares, & Fares, 2011; Blonquist, Jones,

& Robinson, 2005; Evett, Tolk, & Howell, 2006; Vaz et al.,

2013).

However, SWC probes must be calibrated for farmland

management and for validation of remotely sensed SWC

retrievals (Cosh, Jackson, Bindlish, Famiglietti, & Ryu, 2005;

Robinson, Jones, Wraith, Or, & Friedman, 2003) and for dif-

ferent soil types, as soil properties affect EM-based SWC mea-

surement (Leib, Jabro, & Matthews, 2003; Malicki, Plagge,

& Roth, 1996; Ponizovsky, Chudinova, & Pachepsky, 1999).

Thus, soil-specific correction is recommended for SWC

probes before application, even though factory-determined

calibration options are generally used due to their simplic-

ity. Many previous studies have described EM sensor appli-

cations in different soils and have compared SWC probes in

laboratory settings (Blonquist et al., 2005; Chow, Xing, Rees,

Meng, & Monteith, 2009; Evett et al., 2006; Vaz et al., 2013;

Walker, Willgoose, & Kalma, 2004). However, few studies

have compared the performance of portable EM-based SWC

probes made by different manufacturers, and even fewer stud-

ies have combined two different EM-based SWC datasets with

the aim of improving the accuracy of SWC measurement at

field scales.

In the present study, we focus on the evaluation, correc-

tion, and combination of six types of portable SWC probes

in a portable configuration with handheld data loggers. We

chose the following probes because they have been widely

used both by farmers and by scientists in various research

fields of study. We used the ThetaProbe soil moisture sensor

(hereafter ML3), the HydraProbe soil moisture sensor (here-

after HydraProbe), the Spectrum TDR100 soil moisture meter

(hereafter FS100), the SM150 soil moisture sensor (hereafter

SM150), the HydroSense II portable system (hereafter HS2),

and the TRIME-PICO64 probe (hereafter PICO64). An anal-

ysis of the performance of these probes is necessary for a

variety of applications, as some projects cannot support the

deployment of in situ loggers. Spatial assessments of SWC

are more efficiently performed with portable sensors, as is the

case with the following major soil moisture field experiments:

the Soil Moisture Experiments (SMEX; Bosch, Lakshmi,

Jackson, Choi, & Jacobs, 2006), Soil Moisture Active Passive

Validation Experiments (SMAPVEX; Jackson et al., 2014),

the National Airborne Field Experiment (NAFE; Mladenova

et al., 2011), and the Canadian Experiment for Soil Moisture

(CANEX; Magagi et al., 2013). Individual assessments of the

sensors used in these campaigns have been performed, but

this is the first cumulative assessment of all common sensors

examined for a single soil type as a common basis of com-

Core Ideas
• Six portable soil moisture probes performed accu-

rately after site-specific correction.

• Soil moisture data from similar electrode length

probes showed a similar distribution.

• Synergetic use of two different sensor types can

improve the correlation coefficient.

• Synergetic use of two different sensor types can

reduce systematic bias.

parison. To investigate the accuracy of these six SWC probes,

the data were collected in sandy loam soil at a research site in

Maryland (USA) in summer 2019. The present research seeks

to answer the following questions:

1. What are the measurement uncertainties of various com-

mercially available portable SWC sensors?

2. Do different types of SWC probes, or several probes of

the same type, show statistically different performance in

comparison with reference data?

3. Can we improve the performance of SWC sensors by com-

bining data from different type of sensors?

Answering these questions will provide us with new

insights into the characteristics, limitations, and uncertainties

of different SWC probes with portable devices.

2 MATERIALS AND METHODS

2.1 Study site

The Optimizing Production Inputs for Economic and Envi-

ronmental Enhancement (OPE3) site is located in Prince

George’s County, Maryland (39.03◦ lat., −76.84◦ long.).

Since 1998, >90 scientists from several U.S. federal agencies,

universities, and private industry have conducted research

at this location (De Lannoy, Verhoest, Houser, Gish, & Van

Meirvenne, 2006; Srivastava et al., 2015). This site is listed

in the Soil Climate Analysis Network (SCAN) as Powder

Mill (https://www.wcc.nrcs.usda.gov/scan/). The soil texture

at the OPE3 site is sandy loam with 56% of the site classified

as the Russett (fine-loamy, mixed, semiactive, mesic Aquic

Hapludults)–Christian (fine, mixed, semiactive, mesic Typic

Hapludults) complex. The field texture of the soil was deter-

mined based on particle-size distribution analysis. Further

information regarding the soil texture of the OPE3 site is

shown in Figure 1a and Table 1. The thirty locations from

which soil samples were taken are marked with red boxes

(Figure 1a). More detailed descriptions of each sampling

https://www.wcc.nrcs.usda.gov/scan/
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F I G U R E 1 (a) The soil map of the Optimizing Production Inputs for Economic and Environmental Enhancement (OPE3) site: the 30 red boxes

indicate sampling locations. The actual sampling boundary was about 2.1 by 1.4 m, and a gap of at least 2 m from the center of each sampling point

was ensured between different soil types in order to collect only sandy loam soil. (b) One of the sampling locations at the OPE3 site. (c) The scoop

tool (5 × 5 × 5 cm) and funnel (inset picture) used to sample 0- to 5-cm soils. (d) Can, bag, funnel, spatula, and depth-marked hand shovel. Note: the

shovel was used to sample soil depths >5 cm

T A B L E 1 Summary of the soil texture at the Optimizing

Production Inputs for Economic and Environmental Enhancement

(OPE3) site

Depth Texture Clay Silt Sand
cm %

0–14 Sandy loam 5.7 23.9 70.4

14–29 6.3 25.9 67.8

29–46 6.2 30.8 63.0

Note. Source: https://ncsslabdatamart.sc.egov.usda.gov/.

location are shown in Figure 1b, and further information on

the process used to obtain the soil samples is provided in

Section 2.3.

2.2 Datasets

The relative permittivity of soil is dependent primarily on

water content and secondarily on temperature, bulk electrical

conductivity (EC), clay content and type, and EM frequency

(Logsdon, Green, Seyfried, Evett, & Bonta, 2010; Robinson

et al., 2003; Seyfried, Grant, Du, & Humes, 2005). The

relative permittivity is defined as the ratio of the dielectric

of the material to that of the voids. The real part of the soil

dielectric describes its ability to store energy in an applied

electric field, whereas the imaginary part relates to energy

loss (Bosch, 2004; Topp, Davis, & Annan, 1980). Estimates

of the real component of the dielectric are often described as

the apparent dielectric (Ka), as estimates neglect the energy

loss components (Bosch, 2004). The effective frequency

range for measuring SWC is based on the dielectric number

of the saturated soil known to lie approximately between 50

and 10,000 MHz (Vaz et al., 2013). If the frequency is below

100 MHz, the relative permittivity of moist soil depends

greatly on soil type (Smith-Rose, 1935), and if the frequency

is above 10,000 MHz, the relative permittivity of moist soil

falls off due to water relaxation (Hoekstra & Delaney, 1974;

Roth, Schulin, Flühler, & Attinger, 1990). Many impedance

https://ncsslabdatamart.sc.egov.usda.gov/
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F I G U R E 2 Six portable electromagnetic sensors and electrode

lengths. The probes used are as follows: (a) three ML3s, (b) three

HydraProbes, (c) three FS100s, (d) three SM150s, (e) three HS2s, and

(f) one PICO64

and capacitance sensors operate at lower frequencies between

20 and 300 MHz (Bosch, 2004), and time domain reflec-

tometry (TDR), time-domain transmissometry (TDT), and

transmission line oscillation (TLO) operate within the

frequency range of 100–10,000 MHz (Cassel, Kachanoski,

& Topp, 1994; Heimovaara, de Winter, van Loon, & Esveld,

1996; Topp et al., 1980; Vaz et al., 2013).

In this study, we investigated six different portable EM-

based SWC probes with portable data loggers (Figure 2),

using multiple sensors of the same type and testing 16 SWC

probes in all. It is worth noting that although this study tested

probes equipped with portable data loggers, the performance

results of the probes will be analogous to an in situ installation.

The total number of sensors included three ML3 ThetaProbe

soil moisture sensors (Delta-T Devices; Section 2.2.1), three

HydraProbe soil moisture sensors (Stevens Water Monitor-

ing Systems; Section 2.2.2), three FS100 (Spectrum) sen-

sors (Spectrum Technologies; Section 2.2.3), three SM150

soil moisture sensors (Delta-T Devices; Section 2.2.4), three

HydroSense II sensors (Campbell Scientific; Section 2.2.5),

and one TRIME-PICO64 sensor (IMKO; Section 2.2.6). All

16 sensors were tested at the OPE3 site in Maryland,. Model

numbers, manufacturers, and descriptive information for all

sensors are presented in Table 2.

All sensor electrodes were inserted perpendicularly into the

soil surface until the electrodes were fully covered by soil.

Then, factory-determined VWC values were taken by reading

values shown in the datalogger display.

2.2.1 The ThetaProbe soil moisture
sensor (ML3)

The ML3 ThetaProbe (Delta-T Devices) is an impedance-type

sensor designed to measure the relative permittivity of soil

(Figure 2a). ML3 sensors have been used both as portable

sensors and as in situ sensors buried in the soil for long-

term studies. Four electrodes are attached to the sealed plastic

body, and these electrodes are inserted directly into the soil

to measure voltage (mV). The manufacturer’s specification of

the sensing volume is >95% influence within a 40-mm-diam.

cylinder, 60 mm long, around the central rod. In this study,

the linearization table was set to the “mineral” type of soil.

T A B L E 2 Summarization of specs and related websites for each sensor

Sensor Abbreviation Manufacturer Type f Manufacturer’s estimated accuracy
Length of
sensing rods

MHz cm

ThetaProbe soil moisture

sensor

ML3 Delta-T I 100 ±1% (VWC) over 0–50% and 0–40 ◦C 6.0

HydraProbe soil moisture

sensor

HydraProbe Stevens I 50 3% (WFV) and ±0.3% (WFV

precision)

5.7

TDR100 soil moisture

meter

FS100 Spectrum Tech. TLO N/A ±1% (VWC) with electrical

conductivity < 2 dS m−1

7.6

SM150 soil moisture sensor SM150 Delta-T C 100 ±3% (VWC) over 0–70% VWC and

0–60 ◦C

5.1

HydroSense II portable

system

HS2 Campbell TLO 175 ±3% (VWC) 12.0

TRIME-PICO64 probe PICO64 IMKO TLO 1,000 ±2% (VWC) over 0–40% VWC and

±3% VWC over 40–70% VWC

16.0

Note. f, frequency; TDR, time-domain reflectometry; TLO, transmission line oscillation; I, impedance; C, capacitance; N/A, not available; VWC, volumetric water content;

WFV, water fraction by volume. The effective frequency is not provided by manufacturers.
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Further details regarding the ML3 sensor are provided in the

supplemental material.

2.2.2 The HydraProbe soil moisture
sensor (HydraProbe)

The Stevens HydraProbe soil moisture sensor (Stevens Water

Monitoring Systems) is an electrical impedance sensor

designed to determine the relative permittivity of soil using

EM waves at a frequency of 50 MHz (Figure 2b). It has

proven to be robust under various field conditions (Seyfried

& Murdock, 2004) and has been used both as a portable

sensor and as part of in in situ SWC networks; for exam-

ple, SCAN in the United States and REMEDHUS in Spain

have adopted the HydraProbe for long-term SWC monitoring

(Lievens et al., 2015; Sanchez, Martinez-Fernandez, Scaini,

& Perez-Gutierrez, 2012). The sensors were buried for peri-

ods of several months to years to assess sensor performance

(Bosch et al., 2006; Cosh et al., 2016) or for application in

various research fields (Cosh, Jackson, Moran, & Bindlish,

2008; Dumedah, Walker, & Merlin, 2015; Hottenstein, Ponce-

Campos, Moguel-Yanes, & Moran, 2015; Kelleners & Norto,

2012). The manufacturer’s specification of the sensing vol-

ume is within a 30-mm-diam. cylinder, 57 mm long, around

a central rod. In this study, we used the Stevens Hydra data

reader: three HydraProbes were logged into three Stevens

Hydra data readers. The Hydra data reader provides four user-

selectable soil texture settings: sand, silt, clay, and loam. The

soil type was set to sand, as is common for the OPE3 field.

Further details regarding the HydraProbe sensor are provided

in the supplemental material.

2.2.3 The Fieldscout TDR100 soil
moisture meter (FS100)

The Fieldscout TDR100 (Spectrum Technologies) is a water

content reflectometer (WCR) based on the TLO principle

(Figure 2c). The name “TDR100” would lead the reader

to assume that the unit uses TDR, but in reality, it does

not. Despite its name, the TDR100 is a WCR-type device

(Benor, Levy, Mishael, & Nadler, 2013; Kargas & Kerkides,

2008). The Ka is related to the period of applied voltage,

which is measured from the WCR. For more details regard-

ing the WCR, please refer to Chandler, Seyfried, Murdock,

and McNamara (2004). The FS100 technique is similar to that

of the Campbell CS616: it uses a quadratic equation related

to a period average to calculate SWC (Singh et al., 2018).

Very few studies are publicly available regarding comparative

research of the FS100 sensors with other SWC probes, perfor-

mance assessment over various soils, or performance assess-

ment over soils having different physicochemical characteris-

tics. The FS100 is suitable for these purposes, as it was origi-

nally designed for use with portable devices for periodic mon-

itoring and recording of SWC, rather than for use in continu-

ous monitoring of SWC in situ networks. The manufacturer’s

specification of the sensing volume is an elliptical cylinder

extending ∼10 mm around the rods. In this study, we used

three FS100 sensors (7.6-cm rods) with the VWC setting of

“standard mode.” Further details regarding the FS100 sensor

are provided in the supplemental material.

2.2.4 The SM150 soil moisture
sensor (SM150)

The SM150 soil moisture sensor (Delta-T Devices) is a capac-

itance sensor designed to estimate SWC from a differential

analog direct current (DC) voltage (Figure 2d). SM150 sen-

sors have been used both as portable sensors and as sensors

buried in the ground. These sensors have been buried for peri-

ods of several days to years in order to collect SWC data

for application in various fields of research (Roets, Cronje,

Schoeman, Murovhi, & Ratlapane, 2013; Veeramanikan-

dasamy, Sambath, Rajendran, & Sangeetha, 2014); however,

no performance assessment has been conducted involving the

use of the SM150 as a portable sensor. The manufacturer’s

specification of the sensing volume for best results is an ellip-

tical cylinder extending ∼25 mm around the rods. In this

study, we used three SM150 SWC probes with three HH150

data loggers manufactured by Delta-T Devices. The HH150

meter provides five default soil texture settings: mineral, peat

mix, coir, mineral wool, and perlite. The soil type was set to

mineral. Further details regarding the SM150 sensor are pro-

vided in the supplemental material.

2.2.5 The HydroSense II portable
system with CS659 (HS2)

The CS659 water content sensor for HydroSense II (Camp-

bell Scientific) is a 12-cm electrode version of the CS65x

(e.g., CS650/655), and all CS65x are new versions of the

original CS615 WCR (Figure 2e; Caldwell, Bongiovanni,

Cosh, Halley, & Young, 2018). It is worth noting that all

the new CSI TLO are referred to as “CS65x.” The CS65x

has been used in various research fields that require ground-

based SWC measurements; for instance, it was used in

optimizing satellite-based SWC data (Bai, He, & Li, 2016),

investigating tree establishment conditions (Morrison, Holdo,

Rugemalila, Nzunda, & Anderson, 2019), and validating

satellite- and model-based SWC data (Caldwell et al., 2018,

2019; Moller, Jovanovic, Garcia, Bugan, & Mazvimavi,

2018). In this study, we used the CS659 with the HydroSense

II portable device. The manufacturer’s specification of the
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sensing volume is a cylinder of ∼30-mm diam. along the

full length of the rods. We used three HS2 probes. Further

details regarding the CS65x sensor are provided in the

supplemental material.

2.2.6 The TRIME-PICO64 probe

The TDR with intelligent micromodule element (TRIME)-

PICO64 (hereafter PICO64) sensor is WCR and determines

VWC, temperature, and EC in soils (Figure 2f). The PICO64

sensor is ideal for mobile use with the portable measur-

ing device HD2. The PICO64 sensors have been used as

in situ sensors requiring burial for long periods of time;

however, no performance assessment has been made regard-

ing this sensor. In contrast with conventional TDR systems,

the TRIME system does not determine transit time from

the entire waveform; rather, it determines transit time from

the time of reflection at a given (threshold) voltage level

(amplitude) (Dettmann & Bechtold, 2018). The manufac-

turer’s specification of the sensing volume is ∼2 mm in

the vicinity of the probe rods. In this study, we logged a

PICO64 sensor (IMKO) into an HD2 data logger because

PICO64 requires an external 7- to 24-V DC power supply. Fur-

ther details regarding the PICO64 sensor are provided in the

supplemental material.

2.3 Methodology

2.3.1 Gravimetric water content

In the present study, we used gravimetric water content

(GWC) as the reference for SWC, since the thermogravimet-

ric method, which consists of collecting and oven drying the

soil, has been considered to produce the most reliable SWC

value (Bosch, 2004; Reynolds, 1970). The collected GWC

values were converted to VWC units, since the probes used in

this study use the EM method to determine VWC. The GWC,

which is provided in units of grams per gram, was converted

to volumetric units by estimating the ratio of water volume in

the soil (called the bulk density of the soil, ρb, in g cm−3) to

the ratio of the estimated soil sample volume. The GWC is

converted to VWC using Equation 1:

VWC = GWC
(
𝑏

𝑤

)
(1)

where w is the density of water. In the present study, in order

to convert the gravimetric SWC values to VWC—hereafter

GVWC—we used the soil scoop and coring tools to collect

soil samples from the 30 different points at the OPE3 site

where we tested the 16 sensors. These soil samples were also

used to determine the b values for depths of 0–5, 0–10, 0–15,

F I G U R E 3 Boxplot showing the bulk density (ρb) values for

different depths at the Optimizing Production Inputs for Economic and

Environmental Enhancement (OPE3) site. The central red line indicates

the median, and the left and right edges of the box represent the 25th

and 75th percentiles, respectively. The whiskers extend to the farthest

data points not considered as outliers

and 0–20 cm (Bosch, 2004; Reynolds, 1970). Figure 3 illus-

trates the boxplots of ρb values with respect to the different

depths sampled at OPE3. From Figure 3, it is clear that the

most accurate GVWC values can be obtained by using differ-

ent ρb values to convert gravimetric SWC values into VWC

for different soil depths. For the GVWC values used as refer-

ences for the ML3s (electrode length = 6 cm), HydraProbes

(electrode length = 5.7 cm), and SM150s (electrode length =
5.1 cm) sensors, we used the median values of the 0- to 5-cm

ρb. Similarly, for the FS100s, HS2s, and PICO64, we used the

median values of 0- to 10-cm, 0- to 10-cm, and 0- to 15-cm ρb,

respectively, to convert gravimetric SWC to VWC. This con-

version was necessary because the electrode lengths of these

sensors are 7.6, 12, and 16 cm, respectively. For the soil depth

of 0–5 cm, the scoop tool was used to determine the ρb value

directly because this tool was specially designed to sample

soil in the topsoil layer (5 × 5 × 5 cm, Figure 1c). However,

in order to sample deeper soils (i.e., depths of 7.6, 12, and

16 cm), it was necessary to use the coring tool to determine

ρb values.

2.3.2 Site-specific sensor correction

All sensor readings and soil samples were collected from

30 locations within the OPE3 site (Figure 1a). Each sen-

sor was tested within a rectangular grid (70 × 70 cm), and

three soil samples were taken for each sampling. For exam-

ple, the VWC estimates from the ML3 (electrode length =
6 cm), HydraProbe (electrode length = 5.7 cm), and SM150
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F I G U R E 4 The hourly volumetric water content (VWC, at 5-cm depth) time series and hyetograph during the study period in Soil Climate

Analysis Network (SCAN) site Powder Mill. The sampling dates are indicated with red dots

(electrode length = 5.1 cm) sensors were compared with the

GVWC values taken from soil samples using a scoop tool with

a fixed volume (the scoop tool is shown in Figure 1c). Simi-

larly, for the FS100, HS2, and PICO64 sensors, we sampled

the soil from depths of 0–8, 0–12, and 0–16 cm to obtain the

GVWC (using the hand shovel shown in Figure 1d). To cross-

check the sample depth against the length of the electrodes,

we measured the depth of the hole after removing the sample.

The GVWC sampling location was always <10 cm from the

location where the probe was inserted (the location of holes

and sensors can be seen in Figure 1b).

To reduce random errors, we averaged the GVWC values

obtained from the three soil samples taken at each different

sensor type’s specific depth. Since we collected three soil

samples from 30 locations for the six different types of sen-

sors, we obtained a total of 540 soil samples (Figure 1b). In

order to prevent soil drying between the time each sample was

taken and the time it was first weighed, we used cans and seal-

able zipper storage bags (Ziploc) (Figure 1d): the weights of

the can and bag were subtracted after the soil dried in order to

calculate the soil weight. For the soil samples that were oven

dried, the oven temperature was set to 105 ◦C, and the soil

samples were dried for 24 h within their containers (cans or

bags).

On the first day of sampling, we carefully chose locations

with different SWC conditions based on the wetness of the

soil. The sampling dates were also carefully chosen between

May and July 2019. In order to obtain the wettest SWC value,

we consistently measured SWC after storm events, using all

16 SWC probes and the wettest sampling locations. Every 1

or 2 d after a storm event, we conducted sampling at around

8:00 a.m. and 5:00 p.m. to obtain drier SWC conditions

than those taken immediately after the storm event. We

did not collect soil samples during storm events; all data

were collected during drying cycles. Figure 4 illustrates the

SCAN site Powder Mill (2049) hourly SWC time series with

a hyetograph during the experiment period. The red dots

indicate sampling dates. On each sampling date, several of the

30 locations shown in Figure 1a were selected for sampling

based on soil wetness conditions. For instance, if a location

had drier SWC values on a new sampling date than on a pre-

vious sampling date, we chose that location for sampling to

ensure that we collected the drier SWC values. For a selected

sampling location, all 16 probes were used to measure SWC,

and soil samples were taken. Each sampling location was

visited at least three times during the study period. This

process allowed us to obtain the wettest to driest (or near-

driest) possible ranges of SWC in the sandy loam areas of the

OPE3 site.

The linear regression equations were determined by com-

paring the GVWC values (θGVWC), and the SWC values

estimated with the sensors (θsensor). Before and after site-

specific correction, the corresponding error statistics were

calculated.

2.3.3 Statistical metrics

For all sensors, we considered four statistical indicators: R
value (Equation 2a), bias (Equation 2b), RMSD, and unbi-

ased root mean square difference (ubRMSD, Equation 2c) (p
value < .05):

𝑅 =
cov

(
θGWVC, θsensor

)
𝑠2θGVWC

𝑠2θsensor

(2a)
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bias =

∑𝑁

𝑖=1

(
θsensor𝑖 − θGVWC𝑖

)
𝑁

(2b)

RMSD =

√√√√√∑𝑁

𝑖=1

(
θGVWC𝑖

− θsensor𝑖
)2

𝑁
(2c)

ubRMSD

=

√√√√√∑𝑁

𝑖=1

[(
θGVWC𝑖

− θGVWC𝑖

)
−
(
θsensor𝑖 − θsensor𝑖

)]2
𝑁

(2d)

where cov(∙) and s2 are covariance and standard deviation

statistics and N is 30. Positive or negative bias values indicate

overestimation or underestimation of SWC from SWC probes.

We also considered ubRMSD, as the variability of ρb of the

soils can cause large variance in θGVWC, thus introducing

systematic errors.

2.3.4 Two-sample t test and
Kolmogorov–Smirnov test

In order to determine whether the different types of portable

SWC sensors of similar electrode length showed similar per-

formance, we conducted a two-sample t test (α = .01). A two-

sample t test is used to test the hypothesis of equality between

two population means, assuming that the populations exhibit

similar means (Kirkwood & Sterne, 2010). Prior to conduct-

ing a two-sample t test, the population of the dataset must be

verified. The two populations are assumed to be normally dis-

tributed based on a Kolmogorov–Smirnov test (α = .01).

2.3.5 Maximize R method

The linear correction method described in Section 2.3.2 cor-

rects for a known portion of systematic error in the data mea-

sured from the portable sensors. Thus, after site-specific cor-

rection of the data based on the linear correction method, the

corrected VWC data will have no systematic errors. How-

ever, this linear correction method will not improve the R and

ubRMSD values.

The maximize R method is a weighted linear combina-

tion method for combining two individual data sets; it is a

physics-based data fusion method introduced by Kim, Pari-

nussa, Liu, Johnson, and Sharma (2015). This method pro-

duces combined data from parent datasets. The combined

data will have improved R values compared with the par-

ent datasets. Previous research has shown that a combined

product based on the maximize R method is superior to the

combined datasets of an individual product (Baik, Liaqat, &

Choi, 2018; Kim et al., 2018).

We introduced an application of the maximize R method,

which combines the VWC data from two different types of

sensors (i.e., parent datasets) to obtain improved temporal

variation. Using this methodology, we produced VWC data of

a higher correlation with the GVWC data. Since GVWC is the

target value that EM-based probes seek to estimate, obtaining

VWC data having a close temporal correlation with GVWC

data is significant. As we mentioned above, the linear correc-

tion method cannot improve the R value, but the maximize R
method can improve it.

Figure 5 shows a schematic step-by-step diagram of the

maximize R method. The three steps of the detailed descrip-

tion are as follows:

• Step 1: Two different types of sensors must be inserted

closely, either vertically (Type 1 as shown in Figure 5, Step

1) or horizontally (Type 2 as shown in Figure 5, Step 1). For

vertical installation, the two sensor types must have similar

electrode lengths in order to measure VWC at similar soil

depths. On the other hand, for horizontal installation (Type

2), two different sensor types can have different electrode

lengths because they will measure VWC at similar depths.

For satellite-based SWC validation field campaigns, sen-

sor installation normally follows Type 1, but for long-term

monitoring of VWC, sensor installation normally follows

Type 2.

• Step 2: It is important to collect VWC data simultaneously

from two different types of sensors. For Type 1, while the

probes are measuring VWC, soil samples for GVWC calcu-

lation should be taken from a depth similar to the sensors’

electrode lengths. For Type 2, while the probes are mea-

suring VWC, soil samples for GVWC calculation should

be taken from the same depths where the two sensors are

buried. This GVWC data are the target data that we want

to estimate from two different types of sensors.

• Step 3: After collecting sufficient data from Step 2, we can

combine the VWC measured from two different types of

sensors using Equations 3a–3d, shown below.

In the present study, all EM-based SWC probes inserted

perpendicularly into the soil surface (described as Type 1),

as is shown in Figure 5, Step 1. Thus, only the VWC mea-

sured in the similar depth of soil (top 5–6 cm) by the ML3,

HydraProbe, and SM150 sensors in similar depths of soil

(top 5–6 cm) were considered for the maximize R method

for in this study.

Two sets of VWC measurements from two different types

of sensors were combined into VWC values (θC) by apply-

ing a weighting factor (w) with a constrained range of 0–1 as

follows:
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θC(sensor1, sensor2)
= 𝑤θsensor1 + (1 −𝑤) θsensor2 (0 ≤ 𝑤 ≤ 1)

(3a)

In order to determine the optimum w value that maximizes

the R value between θC and θGVWC, it is necessary to express

the R value as a function of θC and θGVWC as follows:

𝑅 = 𝑓 (𝑤) =
𝐸

[(
θC − θC

)(
θGVWC − θGVWC

)]
𝑠2θC

𝑠2
θGVWC

(3b)

where θ̄ stands for the average, and s2 stands for the standard

deviation of each datum. Before combining the two differ-

ent SWC measurements in Equation 3a, the systematic differ-

ences between θGVWC and each VWC dataset measured by an

EM-based SWC probe must be removed. Previously, Draper,

Reichle, De Lannoy, and Liu (2012) suggested a method to

normalize each VWC measurement against the reference data

(e.g., GVWC) using Equation 3c:

θNORM =
(
θsensor − θsensor

)
×
𝑠2θGVWC

𝑠2θsensor

+ θGVWC (3c)

Equation 3b can be differentiated with regard to w, and

the resulting w value should theoretically maximize the R
value between θC and θGvwc. After the differentiation of Equa-

tion 3b, w is expressed as a function of the R values between

VWC measured from each EM-based SWC probe and GVWC

dataset as follows:

𝑤 =
𝑅sensor1⋅GVWC −𝑅sensor1⋅sensor2 ×𝑅sensor2⋅GVWC

⎡⎢⎢⎢⎣

(
𝑅sensor2⋅GVWC−𝑅sensor1⋅sensor2 ×𝑅sensor1⋅GVWC

)

+
(
𝑅sensor1×GVWC−𝑅sensor1⋅sensor2 ×𝑅sensor2⋅GVWC

)
⎤⎥⎥⎥⎦

(3d)

where Rx∙y is the R value between two individual measure-

ments after removing systematic differences, according to

Equation 3c.

In order to obtain an unbiased w factor, VWC data of all

possible ranges within the area of interest should be collected.

In addition, to determine the w factors, a large enough sam-

ple size of GVWC and VWC from two different types of

sensors is required to calculate the robust statistics shown in

Equations 3a–3d.

3 RESULTS AND DISCUSSION

3.1 Results of site-specific correction

The results of default factory-calibration SWC data are

illustrated in Figure 6 using linear regression. All statistical

numbers, including the bias (m3 m−3), RSMD (m3 m−3),

ubRMSD (m3 m−3), R value, and constants in linear regres-

sion (i.e., m and n) lines, are shown in Table 3. Since the

target accuracy of the Soil Moisture Active Passive (SMAP)

F I G U R E 5 A step-by-step schematic diagram of the maximize R method. Volumetric water content (VWC) data are measured from two

different types of sensors by inserting them vertically or horizontally (Step 1). The VWC data should be collected simultaneously from two different

types of sensors and from the thermogravimetric method (Step 2). These collected data are then used to calculate the weighting (w) factor, which will

be used to combine the VWC data collected from two different types of sensors (Step 3). EM, electromagnetic; GVWC, gravimetric-based

volumetric water contents
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F I G U R E 6 Factory calibrated volumetric water content (VWC) from physical sampling versus the paired mean of three sensors for (a) ML3,

(b) HydraProbe, (c) FS100, (d) SM150, and (e) HS2 and one sensor value for (f) PICO64. The gray shaded areas in the scatterplots are the possible

correction lines from different bulk density (ρb) values of 0- to 5-cm depth at the Optimizing Production Inputs for Economic and Environmental

Enhancement (OPE3) site and horizontal error bars indicate the standard deviation of paired datasets. GVWC, gravimetric-based volumetric water

contents; SM, soil moisture

satellite mission is ±0.04 m3 m−3 (Entekhabi et al., 2010),

the ubRMSD of the SWC probes should be at or below this

magnitude to validate the satellite-based SWC estimates. In

Figure 6 and Table 3, with SWC data estimated using the

manufacturer’s calibration, some SWC probes had RMSD val-

ues >0.04 m3 m−3; however, all three ML3s, HydraProbe(B),

all three SM150s, and the PICO64 had RMSD values

<0.04 m3 m−3.
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T A B L E 3 Summary statistics for the default factory calibration and site-specific correction of each soil water content (SWC) probe

Default factory
calibration Site-specific correction

Correction
equation

Probe Bias RMSD Bias RMSD ubRMSDa R value Slope m y intercept n
ML3(A) −0.026 0.033 0.000 0.022 0.021 .920 0.976 0.031

ML3(B) −0.033 0.039 0.000 0.021 0.020 .926 0.960 0.042

ML3(C) −0.027 0.033 0.000 0.019 0.018 .941 1.058 0.015

Avg. −0.029 0.035 0.000 0.021 0.020 .929

HydraProbe(A) −0.042 0.050 0.000 0.026 0.025 .883 0.812 0.080

HydraProbe(B) −0.019 0.030 0.000 0.022 0.021 .917 0.843 0.054

HydraProbe(C) −0.047 0.052 0.000 0.022 0.021 .918 0.940 0.059

Avg. −0.036 0.044 0.000 0.023 0.023 .906

SM150(A) −0.018 0.028 0.000 0.019 0.019 .937 0.850 0.052

SM150(B) −0.016 0.028 0.000 0.022 0.022 .916 0.839 0.053

SM150(C) −0.019 0.030 0.000 0.021 0.021 .923 0.855 0.052

Avg. −0.018 0.028 0.000 0.021 0.020 .926

HS2(A) −0.058 0.063 0.000 0.025 0.025 .887 0.972 0.063

HS2(B) −0.049 0.054 0.000 0.023 0.022 .914 1.070 0.035

HS2(C) −0.058 0.062 0.000 0.023 0.022 .913 1.002 0.058

Avg. −0.055 0.059 0.000 0.024 0.023 .905

FS100(A) −0.044 0.047 0.000 0.018 0.017 .947 0.927 0.058

FS100(B) −0.058 0.059 0.000 0.012 0.011 .977 0.966 0.064

FS100(C) −0.046 0.049 0.000 0.017 0.016 .952 0.985 0.049

Avg. −0.049 0.052 0.000 0.015 0.015 .959

PICO64 0.014 0.022 0.000 0.017 0.016 .942 1.105 −0.041

aubRMSD, unbiased RMSD.

Huang, Akinremi, Sri Rajan, and Bullock (2004) also

reported RMSD values of 0.037 m3 m−3 for ML3s and

concluded that ML3s were more accurate than other soil

water instruments (Watermark, Aquaterr, and Aqua-Tel

sensors) in sandy loam soil and required no correction

under laboratory conditions. Furthermore, under laboratory

conditions, ML3 RMSD values of 0.020–0.040 m3 m−3

were reported in other literature (Fares, Abbas, Maria, &

Mair, 2011; Vaz et al., 2013). Finally, in our study, the ML3

ubRMSD values obtained in field conditions were close to

the reported laboratory accuracy of 0.020 m3 m−3 (Vaz et al.,

2013). The HydraProbe showed an average RMSD value

of 0.044 m3 m−3, but HydraProbe(A) and HydraPorbe(C)

showed higher RMSD values (0.050 and 0.052 m3 m−3).

Seyfried and Murdock (2004) noted that for the HydraProbe,

the factory calibration function for a generic soil has an

RMSD of 0.330 m3 m−3 due to the limited dielectric range

imposed by the unrealistic shape of its calibration function.

Considering that 10% of our GVWC data are >0.330 m3

m−3, the relatively high RMSD might be caused by an SWC

range that was >0.330 m3 m−3 during the study period.

Furthermore, the RMSD and ubRMSD of the SM150 sensors

are lower than those of all other sensors except the PICO64.

In terms of RMSD, the SM150 using the factory default cal-

ibration performs better than other sensors of similar sensing

depths (the ML3 and HydraProbe, Table 3). The average

RMSD values for the default factory and site-specific cor-

rection measurements were 0.028 and 0.021 m3 m−3, respec-

tively. Furthermore, Zhu, Irmak, Jhala, Vuran, and Diotto

(2019) reported that the SM150 produced the highest accu-

racy of all TLO- and frequency domain reflectometry (FDR)-

type sensors in silt loam. However, the permittivity of the soil

could cause an anomaly in the transmitted EM field, since

the EM field is affected by other soil properties. Therefore, in

other soil conditions, the performance of SM150 may vary.

After site-specific correction, the ubRMSD values

from three probes of similar sensing depths—the ML3s,

HydraProbes, and SM150s—were almost identical: 0.020,

0.023, and 0.020 m3 m−3, respectively. For ML3 sensors,

after site-specific correction, the average RMSD value

decreased from 0.035 to 0.021 m3 m−3. However, Cosh

et al. (2005) reported that after field-specific correction for

soil type of sandy loam–sand (0–25% sand and 50–70%

clay), ML2 sensors used in measuring 21 field samples

returned an RMSD of 0.043 m3 m−3. Since Vaz et al.

(2013) reported a lower performance of ML3 sensors in soil

with high fractions of clay than in sandy soils, the lower

RMSE results produced by the current research may be
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the result of the soil type, which were composed mostly of

sandy loam. Fares et al. (2011) reported a RMSE value of

0.043 m3 m−3 after applying the calibration function to the

ML2 laboratory calibration equations. These results indicate

that for collecting SWC data at shallow soil depths (0–5 cm)

for remotely sensed SWC data, the ML3, HydraProbe, and

SM150—along with portable devices—are suitable for sandy

loam soil conditions after site-specific correction.

Of all the sensors studied, the PICO64, which is based

on the principle of TLO, showed excellent performance

both before and after site-specific correction: the RMSD

values were 0.022 m3 m−3 before site-specific correction

and 0.017 m3 m−3 after site-specific correction. The PICO64

probe is less susceptible to interference from EC because

it operates at a high frequency (1,000 MHz) than capac-

itance probes (Robinson et al., 2008). High frequencies,

such as 1,000 MHz, can carry out an exact partition of

moisture and conductivity, unlike capacitive probes with

lower frequencies. This difference in performance is due

to the fact that capacitance probes are affected by the EC

properties of soil. Of all the sensors, the FS100 showed

the greatest improvement. The average statistics from

all the FS100s showed the highest R value (average =
0.959) and the lowest ubRMSD (average = 0.015 m3 m−3)

after site-specific correction. There appeared to be a large

improvement (0.037 m3 m−3) in the RMSD of the FS100s

after correction, dropping from 0.052 m3 m−3 before cor-

rection to 0.015 m3 m−3 afterward. Site-specific correction

decreased RMSD errors of all FS100 sensors to <0.02 m3 m−3

with negligible bias. This result indicates that after proper

correction, all portable sensors tested in the present work can

be used to validate satellite-based SWC estimates with good

accuracy (better than ±0.04 m3 m−3). However, site-specific

correction is always recommended before beginning a vali-

dation effort or a field campaign. This result also indicates

that several separate correction efforts may be required to

accurately represent satellite-based SWC estimates over large

areas (i.e., several kilometers) with multiple soil types.

3.2 Results of two-sample t test

The null hypothesis of the two-sample t test is that the data

in a pair of SWC measurements from sensors come from nor-

mal distributions with the same mean. A p value with a sig-

nificance level of <1% rejects the null hypothesis. Supple-

mental Figure S1 shows the p value results of two-sample

t test for sensors of similar electrode lengths (5–6 cm), includ-

ing ML3s, HydraProbes, and SM150s. We did not perform

two-sample t test on variances pairing the CS659 and the

FS100 with other sensors because the CS659 and FS100’s

electrode lengths are quite different from those of the ML3s,

HydraProbes, FS100s, and PICO64.

In Supplemental Figure S1, it is observed when the manu-

facturer’s calibration is used to estimate SWC sensors having

similar electrode lengths (e.g., ML3 vs. HS, ML3 vs. SM150,

and HS vs. SM150) the null hypothesis of the two-sample t test

was not rejected. This is because the SWC measurements from

sensors of similar electrode lengths were statistically similar

without site-specific correction.

3.3 Results of combined volumetric water
content data calculated from two different
types of electromagnetic-based probes

Table 4 shows the improvement in R value after combining

two different types of sensors for the 0- to 5-cm SWC esti-

mations (ML3, HydraProbe, and SM150). The results show

that the R value is always higher after combining data from

two different types of sensors. The maximum improvements

in R value were found when the HydraProbe sensors were

used with ML3 sensors. Specifically, the R value for single-

sensor use of HydraProbe(A) improved from .883 to .941

when HydraProbe(A) was combined with ML3(C) (Table 4).

On average, when any two sensors were combined, the R
value increased by ∼1.9%, and the maximum improvement

in R value was ∼2.8% (“Improvement in R value” column in

Table 4). The average R value improved from .930 to .959.

Table 5 shows the w factor for each pair of sensors for 0- to

5-cm depths of SWC data. The largest w factor is shown in the

SM150(A) [0.775, the SM150(A) row and the “Avg.” column

in Table 5], and the average w factor for all SM150 sensors

was 0.661 (“Same sensor type avg.” column in Table 5). This

result indicates that the SM150 sensor is the major contributor

in improving the R value of data combinations measuring 0-

to 5-cm SWC.

Before combining of two different SWC measurements

from Equation 3a, the systematic differences between θGVWC

and each parent product were removed. Thus, the RMSD from

a single sensor measurement decreased dramatically. Table 6

shows the results of RSMD before and after the two differ-

ent types of sensors were paired. The greatest improvement in

RMSD was shown when the HydraProbe was combined with

the ML3. On average, when a sensor of one type was com-

bined with a sensor of another type, the RMSD decreased by

∼44.8% of the original error. The average maximum decrease

in RMSD was 47.5% (“Improvement in RMSD” column

in Table 6). The average RMSD decreased from 0.036 to

0.018 m3 m−3
.

In this study, we proposed combining two different types

of EM-based SWC probes to improve the quality of SWC

data. However, it is worth noting that the currently deter-

mined w factors shown in this study are not applicable to other

soil properties because these values were determined only for

sandy loam and only for one specific depth of soil (0–5 cm).
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Although the proposed method can improve R and ubRMSD

statistics, for practical application, w factors should be deter-

mined for each study area of interest.

4 CONCLUSION

We compared, calibrated, and combined six commonly used

and/or newly available portable EM-based SWC probes

equipped with portable data loggers. Our first finding was

that without site-specific correction, some of the portable

EM-based SWC probes, including the HydraProbe, HS2, and

FS100 sensors, showed RMSD values >0.040 m3 m−3 (accu-

racy required by SMAP soil moisture products). In other

words, they demonstrated unsatisfactory accuracy for vali-

dating remotely sensed SWC data in sandy loam soils. How-

ever, after site-specific correction, the RMSD for all sensors

decreased to <0.025 m3 m−3. These results indicate that SWC

probes with portable devices are suitable for validating large-

scale SWC estimates in a sandy loam soil, after implemen-

tation of site-specific correction. Use of portable EM-based

SWC probes presents a quick and easy way to take multi-

ple observations within various satellite pixels—either at the

original resolution (e.g., ∼36-km products from SMAP prod-

uct) or at the downscaled resolution of SWC product (e.g.,

1-km products from SMAP/Sentinel). The accuracy of the

portable EM-based SWC probes is greater than the require-

ments for satellite soil moisture retrievals, which makes these

probes a very attractive option for future validation studies.

However, it should be noted that we have undertaken this

evaluation at the OPE3 site with sandy loam soils. There-

fore, results shown in this study are only valid for similar

soil properties because capacitance and quasi-TDR sensors

are influenced by EC and soil texture and cannot be gen-

eralized to other locations with soil types other than sandy

loam.

Second, we conducted a two-sample t test to determine

whether VWC data measured from the different types of

sensors showed significantly similar performance. The two-

sample t test results showed that VWC measurements from

EM-based SWC probes of similar electrode lengths were sta-

tistically similar without site-specific correction.

Third, using the maximize R method, we combined VWC

data from different pairs of VWC sensors. Data combination

improved the R values and decreased the ubRMSD. These

results suggest that, in addition to performing site-specific

correction, EM-based SWC probes can be used in pairs to

produce more accurate VWC data and reduce the systematic

bias of VWC sensors.
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