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HIGHLIGHTS GRAPHICAL ABSTRACT

Global irrigated areas are identified by
combining satellite and reanalysis
datasets.

Soil moisture-based irrigation detection
has omitted highly irrigated areas.
Temperature-based irrigation detection
counteracts urbanization.

Our results demonstrate reasonable ac-
curacy of the proposed irrigation map.
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ARTICLE INFO ABSTRACT

Am'Cl_e history: Despite the importance of irrigation in meeting the world's food demand and as an essential human modification
Received 8 February 2019 ) to water and energy cycles, the reliable extent and distribution of the global irrigated areas remain undefined. In
Received in reV‘?Td form 24 April 2019 this study, an intuitive method is proposed, based on the aftereffects of irrigation, to detect global irrigated areas
ACC?PtEd 25 Apn 2019 by combining satellite and reanalysis datasets. The proposed methodology assumes that irrigation is an
Available online 26 April 2019 . . . . . . .
unmodeled land surface process, while satellite observations can effectively detect irrigation signals in near
real-time. The spatial extents of irrigation were derived by calculating the difference between the remotely
sensed and reanalysis datasets. To detect the irrigated areas, three irrigation-dependent variables, soil moisture

Editor: Ouyang Wei

Keywords:

Soil moisture

Remote sensing

Land surface modeling

Human alteration

Land-atmosphere interaction, Irrigation
[rrigation

(SM), land surface temperature (LST), and surface albedo (A ), were used. In the absence of reliable ground
truths, the proposed irrigation map was compared to the commonly used global irrigation maps, namely Global
Map of Irrigated areas, Global Irrigated Area Map, and recently developed Global Irrigated Areas by Meier et al.
(2018). Individual detection by SM, LST, and A; has discrepancies in detecting irrigation signals in highly irrigated,
urbanized, and semi-arid regions. However, by combining the individual detection maps, the proposed method
showed reasonable agreement with the reference irrigated maps overlapping with approximately 70% of the ir-
rigated areas. We believe that the proposed method, as stand-alone or in combination with the existing irrigation
maps, will benefit the studies regarding water and energy balance closure in near-real time for large-scale land
surface models by minimizing the uncertainties in model parameterization.
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1. Introduction

Irrigation supplies artificial water to crops to fulfill global food de-
mand by providing better crop growth conditions and higher average
crop yield. It is an essential tool to meet the world's food security,
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contributing to 40% of the global agriculture productivities using only
20% of the total cultivable land (Molden, 2007; Schultz et al., 2005).
However, irrigation utilizes nearly 70% of global freshwater (Ozdogan
et al,, 2010) and is a critical human alteration to natural land surface
processes (Gordon et al., 2005; Kumar et al., 2015). This alteration mod-
ifies the surface energy balance and hydrological cycle by changing the
local soil moisture (SM), evapotranspiration (ET), and land surface tem-
perature (LST) (Douglas et al., 2009; Pielke et al., 2011; Ryan et al., 2017;
Sacks et al., 2009). The application frequency and quantity of irrigation
water have changed in recent years due to climate change effects, ad-
vances in irrigation techniques and plant genetic engineering, and
rapid population growth (Evans and Sadler, 2008; McDonald and
Girvetz, 2013; Riediger et al.,, 2014; Zhao et al., 2015). Irrigation infor-
mation is key to several hydrological applications, such as drought-
and yield-management and understanding water- and energy-cycles,
biosphere-atmosphere interactions, and climate dynamics (Puma and
Cook, 2010; Sacks et al., 2009; Wisser et al., 2010; Zhang and Lin,
2016). Recognizing the importance of irrigation as a vital land manage-
ment practice, studies addressing the effects of irrigation on regional
and global climate have rapidly caught the attention of the scientific
community (Cheng et al., 2017; Douglas et al., 2009; McDonald and
Girvetz, 2013; Pielke et al., 2011; Puma and Cook, 2010).

Despite the importance of irrigation for food security and as an es-
sential human-induced land surface change, accurate information re-
garding the spatial extent and distribution remains poorly reckoned.
Accurate information is required to understand biosphere-atmosphere
interactions administered by the planetary boundary layer feedback
(Lawston et al., 2015; Qian et al.,, 2013). This includes modeling energy
and water exchanges between land and atmosphere (Boucher et al.,
2004; Gordon et al.,, 2005; Ozdogan and Woodcock, 2006), recognizing
irrigation water supply and demand under changing climate (Alcamao
et al,, 2003; Rosenzweig et al., 2004; Vérosmarty et al., 2000), and man-
aging water resources for global food productivity (Vérosmarty and
Sahagian, 2000). Previously, several attempts have been made to esti-
mate the spatial extent of irrigation at regional (Ambika et al., 2016;
Ozdogan and Gutman, 2008) and global scales (Loveland et al., 2000;
Meier et al., 2018; Salmon et al., 2015; Siebert et al., 2005; Thenkabail
et al.,, 2009). However, none of them represents the actually irrigated
areas; rather they depict potential irrigated areas. Moreover, irrigation
mapping using these datasets follows a complicated procedure and
are difficult to update because of the changing application rate and pat-
terns due to population growth and climate change (Oki and Kanae,
2006). Additionally, previous studies have employed various parame-
ters to detect irrigation, such as ET, vegetation dynamics, and irrigation
water requirement, which do not truly reflect the actual application of
irrigation water (Meier et al., 2018; Salmon et al., 2015; Thenkabail
et al., 2009). Therefore, in this study, specifice irrigation-dependent var-
iables were considered to map the spatial extent of global irrigation in-
cluding SM, LST, and surface albedo (A.).

Since, irrigation alters local SM, LST, and A; (Qiu et al., 2016; Shiet al.,
2014; Taylor et al.,, 2012), the concept of backward hydrology (Brocca
et al,, 2014), in which aftereffects of a phenomenon is used to estimate
it, can be used to detect irrigation. Thus, in this study, changes in SM,
LST, and A, were used to estimate the global irrigated areas by combin-
ing satellite-based remote sensing and reanalysis datasets. The primary
assumption of this study is the absence of irrigation modules in the
model datasets (H. Wei et al., 2013; J. Wei et al., 2013), while the spa-
tially continuous satellite observations' ability to detect irrigation sig-
nals in near real-time (Kumar et al., 2015; Lawston et al,, 2018). A
similar concept has been previously employed in various studies at re-
gional scale considering SM only (Kumar et al., 2015; Zaussinger et al.,
2019; Zhang et al., 2018). However, SM from the assimilation is consid-
ered a model state variable that absorbs errors from other model com-
ponents (Tuinenburg and Vries, 2017). In ERAI reanalysis, SM is
evenly added to or removed from the model when the 2 m air temper-
ature of the model differs from available observations. Tuinenburg and

Vries (2017) found that the additional SM during the assimilation pro-
cess of ERAI can reasonably represent the irrigation water demand.
Hence, in this study, A; and LST were considered along with SM to esti-
mate the spatial extent of irrigated areas more efficiently.

Land surface model estimates SM, LST, and A; by using energy and
water balance equations. However, the accuracy of model estimates is
limited by the type of model used, quality of input data to force
model, and understanding of the underlying complex hydrological pro-
cess (Kim and Lakshmi, 2019; Arnold et al., 2015; Ferguson and Wood,
2011). Moreover, the currently available global land surface models do
not include engineering artifacts and neglect some natural systems
and processes due to their complex mechanisms (Dee et al., 2011;
Kumar et al., 2015; Wood et al., 2011; Zeng et al., 2018). Alternatively,
spatiotemporal continuous observations of the earth by satellite remote
sensing can potentially capture such unmodeled processes (Hao et al.,
2018). Due to this discrepancy of inclusion and omission of anthropo-
genic effect in satellite and model datasets, respectively, various studies
have shown a definite difference in trends between reanalysis SM esti-
mates and satellite SM observations in irrigated areas (Qiu et al., 2016;
Zohaib et al., 2017).

Because reliable information on the spatial extents and distribution
of actual irrigated areas is limited, the present study proposes a new
method to detect global irrigated areas by combining satellite-based re-
mote sensing and reanalysis datasets that can potentially identify the
actual irrigated areas of the globe. This study is unique because for the
first time a bottom-up approach is utilized to detect the actual global ir-
rigated areas. This global irrigated area map is distinguished from the
previous ones in the sense that it marked the actually irrigated areas
rather than areas that have potential to be irrigated (Salmon et al.,
2015; Siebert et al., 2005; Thenkabail et al., 2009). This was accom-
plished by comprehending the aftereffects of irrigation, i.e., change in
the three hydrological variables such as: SM, LST, and A;. Following
the assumption of this study, the spatial extent of the irrigated areas
can be obtained by comparing the time series of these three variables
during the irrigation season. Owing to the scarce ground truth data re-
garding irrigation, the irrigated areas obtained in this study were com-
pared with commonly used irrigation maps, Global Map of Irrigated
Areas (GMIA), Global Irrigated Area Map (GIAM), and a recently devel-
oped global irrigation map by Meier et al. (2018), now onward termed
as M18. This study is a significant step forward in estimating accurate
spatial extents of actual irrigated areas of globe, which are considered
hotspots in biosphere-atmosphere coupling and will help in minimizing
the substantial uncertainties in climate change projections (Lawston
et al., 2015; Lawston et al., 2017; Vahmani and Hogue, 2014) and
water and energy balance studies (Chen et al., 2018).

2. Materials and methods

The satellite datasets used in this study consist of MODerate-
resolution Imaging Spectroradiometer (MODIS) surface products
(https://ladsweb.modaps.eosdis.nasa.gov/) and European Space Agency
(ESA) Climate Change Initiative (CCI) (https://www.esa-soilmoisture-
cci.org/). The model estimates were obtained from European
ReAnalysis-Interim (ERAI) reanalysis products (https://apps.ecmwf.
int/). MODIS surface products include daily LST and A;, whereas ESA
CCI consists of the combined SM product and land cover product circa
2015. ERAI products include SM, skin temperature (Tsyin), and A Dur-
ing preprocessing, all products were resampled to 25 km grid space
same as ESA CCL

2.1. European ReAnalysis-interim datasets

The model variables such as SM, Tgyin, and A; that do not incorporate
irrigation signals were obtained from ERAI datasets. Daily SM, Ty, (Will
be stated as LST from model hereafter), and A; products were obtained
with 25 km grid cells. The ERAI global atmospheric reanalysis dataset
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(Dee et al., 2011) was released by the European Center for Medium-
range Weather Forecast (ECMWEF) in 2011. The assimilation system uti-
lized by ERAI is a 4D variational analysis with 12-hour analysis win-
dows. The reanalysis data were produced by running a fixed version
of a numerical weather prediction system, ECMWF's Integrated Forecast
System (IFS), 3112 at a T255 spectral resolution (80 km spatial resolu-
tion) with 60 vertical levels. Several atmospheric and surface parame-
ters are freely available at 3-hourly, daily, and monthly datasets
covering the period from 1979 to present (Dee et al., 2011). In this
study, the topsoil layer (0-7 cm) SM was used. Further details on ERAI
products are provided in the supporting information (S1).

2.2. Satellite observations

Observations that contain actual irrigation application information
were obtained from two remote sensing datasets; the MODIS and the
ESA CCI. MODIS is aboard on two polar orbiting research satellites: the
Terra, launched in December 1999 which overpasses at 10:30 and
22:30 local time in descending and ascending orbits, respectively, and
the Aqua, launched in May 2002 which overpasses at 1:30 and 13:30
local time in descending and ascending orbits, respectively. MODIS
scans the entire globe every 1-2 days working in tandem to obtain a fre-
quent and minimal cloud-contaminated surface view, which provides
an opportunity to investigate sub-daily processes. These observations
are beneficial in studying the Earth's water cycle, environment, and
ocean using 36 spectral bands at three different spatial resolutions;
250 m (channel 1 and 2), 500 m (channel 3 to 7), and 1000 m (channel
8 to 36). In this study, daily LST (MOD11C1) and A; (MCD43C3) prod-
ucts were obtained from MODIS. Further details on the MODIS products
used in this study are provided in the supporting information (S2).

SM observations were obtained from the CCI project, initiated by the
ESA in 2012. The ESA CCI SM is a long-term multi-satellite SM data re-
cord that is obtained by merging various available active and passive
microwave-based SM datasets (Liu et al., 2012). In this study, ESA CCI
SM merged product (v04.2) was used, which provides daily products
at 25 km spatial resolution at a depth of 0-5 cm. The merged product
was produced by combining the active and passive satellite retrievals
using an improved weighted-average method (Gruber et al., 2017).
The magnitude of the weights was optimized based on the individual
random error characteristics of the input data, regarding signal-to-
noise ratio, estimated from triple collocation analysis (Gruber et al.,
2016; Khan et al,, 2018). In addition, it is worth noting that the possibil-
ity remains to harness other SM data sources from various active and
passive satellite systems, such as the Soil Moisture Active Passive
(Entekhabi et al., 2010), the Soil Moisture and Ocean Salinity (Kerr
et al., 2001), the Advanced Scatterometer (Wagner et al., 2013), and
the Advanced Microwave Scanning Radiometer 2 (Cho et al,, 2017) or
currently available Global Navigation Satellite System-based SM re-
trieval systems (Kim and Lakshmi, 2018).

2.3. State-of-the-art global irrigation maps

The major limitation of this study, similar to previous ones (Meier
et al., 2018; Ozdogan and Gutman, 2008; Thenkabail et al., 2009), is
the unavailability of ground truth observations to verify the perfor-
mance of the proposed irrigation map. Considering the absence of
ground truths regarding the amount and spatial extent of global irri-
gated areas, we evaluated the performance of the proposed method
by comparing with various state-of-the-art irrigation maps at global:
GMIA (Siebert et al., 2005), GIAM (Thenkabail et al., 2009), and M18
(Meier et al., 2018) and regional scale: MODIS Irrigated Agriculture
Dataset (MIrAD) and irrigated area map of India by Ambika et al.,
(2016). Before comparison, we resampled these maps to 25 km grid
size to make them consistent with the proposed irrigation map.

GMIA is a commonly used irrigation map formulated by the land and
water division of Food and Agriculture Organization (FAO) of the United

Nations. This digital global map was developed by compiling the na-
tional and sub-national level statistics and geospatial information on
the location and extent of area equipped for irrigation in percent units
around the year 2005 at five arc minutes spatial resolution (Siebert
et al.,, 2013). Previously, various studies have used this dataset to assess
newly developed irrigation maps (Ozdogan and Gutman, 2008; Salmon
etal., 2015; Thenkabail et al., 2009) and as a base map for irrigated areas
to study irrigation effects on climate across the globe (Pryor et al., 2016;
Shi et al., 2014; Tuinenburg and Vries, 2017). This dataset is invaluable
information regarding irrigation; however, the statistical information
represents the area equipped for irrigation (upper limit) rather than
areas that are actually irrigated. Drought, equipment failure, and
above average precipitation can all cause the area of irrigated croplands
to differ from the area equipped for irrigation (Droogers, 2002;
Vorosmarty et al., 2000).

GIAM was developed by the International Water Management Insti-
tute (IWMI) based on vegetation cover and potentially irrigated areas at
10 km spatial resolution around year 2000. Vegetation cover was ob-
tained from optical/infrared satellite sensors surface reflectance,
whereas potentially irrigated areas were obtained by calculating the
evaporative fraction from a simple soil water balance model using in-
situ climate observations and FAO digital soil map. The limitation of
this map is that optical/infrared remote sensing observations can be se-
verely affected by atmospheric contamination and cloud cover
(Thenkabail et al., 2009; Vérosmarty et al., 2000). Moreover, this map-
ping methodology is mainly based on the evaporative fraction and veg-
etation index, which do not reflect actual irrigation application.

M18 was recently developed based on GMIA and extending by com-
bining with the high resolution (approximately 1 km) ancillary data
comprising (1999-2012) of multi-temporal Normalized vegetation
index from SPOT-VGT, agricultural suitability data (Zabel et al., 2014),
and WorldClim precipitation (Hijmans et al., 2005). These datasets
were combined in a decision tree framework to identify irrigated
areas at 1 km spatial resolution as downscaled GMIA and additional
areas as active vegetation in the agricultural suitable areas. The results
showed that globally, 18% of additional areas were detected in the
existing highly irrigated areas including India, the Continental United
States (CONUS), and China. M18 had large deviations in Central Asia
(Mongolia and Kazakhstan) owing to the classification error in the
input data. Further, the discrepancies in the M18 and the existing
maps were associated to the definition of irrigation, where GMIA de-
fines irrigated land as an “area equipped for irrigation” and M18 as-
sumes irrigated land where additional water (besides precipitation) is
applied to the active vegetation in agricultural suitable areas.

24. Ancillary data

The spatial extent of irrigated areas is restricted to cropland by ap-
plying cropland mask based on ESA CCI land cover product (https://
www.esa-landcover-cci.org/) representing the year 2015. Cropland
mask was employed because irrigation is mainly applied in cropland
to increase agriculture productivity. The overall weighted area accuracy
of the ESA CCI land cover product is >71.1% based on the GlobCover
2009 validation dataset (Liu et al., 2018). Moreover, the static masks
provided with the ESA CCI SM were also applied to mask out the
areas where satellite have problematic observations (Kim et al.,
2018; Zhuo and Han, 2017), such as rainforest, vegetation optical
depth >0.80 (densely vegetation) and <0.10 (deserts), topographic
complexity, and wetland fraction (Ciabatta et al., 2018). In order
to separate irrigated and non-irrigated periods, Multi-Source
Weighted-Ensemble Precipitation (MSWEP) was used, which is a
global precipitation dataset available from 1979 to 2017 at 3-
hourly time step and 10 km spatial resolution (Beck et al., 2017;
Beck et al., 2018). We resampled it to 25 km to make it consistent
with other datasets.
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2.5. Methodology

2.5.1. Detecting spatial extent of irrigated areas

In this study, the spatial extents of the irrigated areas were discerned
as a positive bias of SM and negative bias of LST and A; between satellite
and reanalysis datasets. Because irrigation causes an increase in local
SM, hence conforming to the assumption of this study, the SM of the ir-
rigated pixels for ESA CCI observations would be higher than ERAI SM
estimates. Thus, pixels with a positive bias between ESA CCI SM and
ERAI SM are assumed as irrigated. Similarly, irrigation causes cooling
(Lobell and Bonfils, 2008; Sacks et al., 2009; Shi et al., 2014). Thus,
MODIS LST observations will be cooler than the ERAI LST estimates,
and a negative bias will represent the irrigated pixels. A; is defined as
the ratio of incident radiation to the reflected radiations, which is altered
by an artificial supply of water to soil as irrigation. Since water absorbs
solar energy, and irrigation increases soil wetness, thus irrigation causes
a decrease in A;. According to the assumption of this study, MODIS Ap
would be lower than the ERAI A;, and a negative bias will represent an ir-
rigated pixel. To detect irrigated areas based on these three variables, the
difference between the satellite observations and model estimates were
calculated. The differences in the datasets were masked out on a rainy
day based on MSWEP to avoid spontaneous increments in SM by rainfall.
Further, if a pixel violated the assumption of this study corresponding to
negative bias of SM and positive biases of LST and A;, were masked out
too. The flowchart of the methodology is shown in Fig. 1.

2.5.2. Assessment of the proposed irrigation map

First, the spatial pattern of irrigated areas were detected using three
variables (SM, LST, and A;) individually. Then, the three individual irri-
gation maps were combined such as the simultaneous detection of irri-
gated areas by a pair of two variables (SM and LST, SM and A;, LST and
Ap) or by all three variables, concurrently. The three individual and com-
bined detection maps were compared against the GMIA for 2005 at dif-
ferent irrigation fractional coverage, i.e., slightly (5-30%), moderately
(30-50%), highly (50-80%), and very highly (>80%); against the GIAM
for 2000 as surface water, ground water, and conjunctive use; and

against M18 for 2012. The comparison was done quantitatively for re-
spective years in terms of the number of pixels and percentages of
total and overlapped detection (the number of overlapped pixels in cer-
tain irrigation class divided by the total number of overlapped pixels of a
variable). Secondly, all four irrigation maps (SM, LST, A;, and combined)
were merged to obtained the final irrigation map by the proposed
method. The overall detection skill of the proposed method to map
the irrigation areas was evaluated by comparing with the three inde-
pendent and commonly known global irrigation maps; GMIA, GIAM,
and M18 and two regional irrigation maps; MIrAD for the CONUS and ir-
rigation area map of India by Ambika et al,, (2016) in terms of
Producer's (PA) and User's (UA) accuracies, which are defined as:

__no.of pixels correctly classified as irrigated in proposed map

PA= total no.of irrigated pixels in the proposed map x 100

__no.of pixels correctly classified as irrigated in proposed map

uA = total no.of irrigated pixels in the reference irrigated map x 100

PA complements the erroneous detection by the proposed method
as omission errors (OE), whereas UA specifies the erroneous detection
by the commission errors (CE).

3. Results
3.1. Individual detections

3.1.1. A soil moisture-based irrigation detection map

Fig. 2a shows the spatial distribution of the difference between mean
satellite (ESA CCI) and reanalysis (ERAI) SM estimates for 2015. Posi-
tive/negative values show that the ESA CCI SM observations are wet-
ter/drier than ERAI SM estimates. Positive values are mainly
distributed over India, South America, and southern China. To limit
the irrigted areas detection to cropland only, we applied ESA CCI LC
cropland mask where both satellite and reanalysis SM showed reason-
able accuracy in terms of TC metrics (supporting information S3),

[ Dailys™, || Daitysm, | | DailyLsT, |[ DailyLsT, | [ Dailya,, || Dailya,, |
IfP=0 IfP=0 IfP=0
SM
ASM=SM,-SM, | | ALST=LST,-LST, | | AA=AL-A, | ESE
sM
v v \ L | N
| AX = Cropland (ESA CCI LC) | L
Combined
s 5 - detection
5 3 3 LST map
3 & T L]
=) s =3 A
VI Q' Al
5 9 §
5 = = SM
LST
SM - based detection | I LST — based detection | | A; — based detection A
L

Acronym §
SM = Soil Moisture i
LST = Land Surface @
Temperature
Ay =Albedo Final Irrigation map
X=SM,LST, A, g
N by combining SM,
Subscripts X
s = satellite LST, A; and combined
m = model detection maps
A = difference

Compare

GMIA (AQUASTAT)
GIAM (IWMI)

M18 (Meier et al., 2018)
MIrAD

Ambika et al., (2016)

Fig. 1. Flowchart of the methodology for irrigation area detection by soil moisture, temperature, and albedo from satellite and model datasets.
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Fig. 2. Spatial distribution of the difference between the satellite and the reanalysis datasets, averaged for daily dataset of 2015 for rain-free period, a) soil moisture, b) temperature, and

¢) albedo.

mean fMSE <0.5 (Fig. S1). Fig. 3a shows that SM-based irrigation detec-
tion map cannot detect very highly irrigated areas, specifically in north-
ern India and California, US, where GMIA shows irrigation >80% (red
boxes in Fig. 3b). This result can be explained by an OE resulting from
the assimilation process, where the atmospheric model in ERAI is forced

toward the observation. Tuinenburg and Vries (2017) showed that the
moisture addition to the ERAI reanalysis process correlates well with
blue water use by plants in these areas. The addition of SM thus violates
the assumption of this study that the satellite remote sensing SM esti-
mates are higher than the reanalysis SM in irrigated pixels. Overall,



684

the SM-based irrigation map for 2005 was able to detect 3910 pixels as
irrigated compared to the 16,807 pixels in the GMIA map (31%) in
which 53.32% pixels overlapped. Quantitatively, the substantial differ-
ence between GMIA and the proposed method's irrigation map might
be associated with the difference in definitions of irrigation and obser-
vational errors. For example, GMIA considered a pixel as irrigated if it
has been equipped for the irrigation whereas the proposed method
only detects actually irrigated pixels. In terms of pixels identified with
different levels of irrigation according to the GMIA, the SM detects
60.43%, 22.59%, 14.67%, and 2.32% in slightly, moderately, highly, and
very highly irrigated areas, respectively (Table 1). This result indicates
that the SM-based irrigation detection has a limitation in highly irri-
gated areas caused by the assimilation process of ERAI SM. Moreover,
the sensitivity of SM-based irrigation detection increases when applica-
tion efficiency decreases (Lawston et al., 2015; Zaussinger et al., 2019),
thus, SM-based irrigation detection in this method is highly sensitive
to gravity irrigation (i.e., flood and furrow) and less sensitive toward
sprinkler and drip-irrigation.

M. Zohaib et al. / Science of the Total Environment 677 (2019) 679-691

3.1.2. A temperature-based irrigation detection map

Fig. 2b shows the difference between mean MODIS LST and mean
ERAI LST for 2015. Generally, a highly positive bias can be observed in
the western part of both northern and southern America (red boxes in
Fig. 2b), and negative bias in India, the middle east, and northeastern
Africa (blue box in Fig. 2b). To detect irrigated areas, pixels that violate
the assumption of this study (i.e., LST difference > 0) and the pixels that
do not belong to cropland were masked out. The LST-based irrigation
detection map (Fig. 3b) identified irrigated areas in India, the Indus
basin of Pakistan, the southern Volga region in Russia, and the south-
eastern African continent. The spatial patterns of LST-based irrigated
areas in India and Pakistan are identified quite satisfactorily compared
to state-of-the-art irrigation maps; however, the irrigated area in
China, the Huang-Huai-Hai plain (red box (1) in Fig. 3b), which is one
of the world's most highly irrigated area, was missed. Similarly, the
highest irrigated area of US, California, is also missing in the LST-based
irrigation detection (red box (2) in Fig. 3b). This OE might be caused
by regional urbanization, which cancels out the cooling effect of

a) Individual irrigation detection by SM
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Fig. 3. Spatial distribution of irrigated areas detected by a) soil moisture, b) Temperature, c) Albedo, and d) combined soil moisture, temperature, and Albedo. The spatial extents of
irrigated regions were obtained by masking the pixels that violates the assumption, that is, the negative difference of SM and positive difference of LST and albedo. Further, ESA CCI LC
cropland masking was applied to restrict the spatial extent of irrigation to the agricultural areas only.
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¢) Individual irrigation detection by Albedo
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Fig. 3 (continued).

irrigation (Shi et al., 2014). Zhou et al. (2004) confirmed warming of
mean LST over southeast China due to urbanization. Similarly, Lobell
and Bonfils (2008) showed that the urbanization near irrigated areas re-
duces the cooling effect caused by irrigation in California. Thus, the
warming effect of urbanization and the cooling effect of irrigation in a
pixel may cancel out each other, and the irrigated areas might not be
marked. Moreover, the LST-based irrigation detection identifies irri-
gated areas in the semi-arid climate of southeastern Africa and Volga,
Russia (blue boxes in Fig. 3b). However, these areas were neither repre-
sented by the reference maps, as irrigated, nor detected by SM. This CE
can be explained by the fact that ERAI LST overestimates MODIS LST in
arid and semi-arid climates because surface energy fluxes are
misrepresented due to imperfections in the parameterization of aerody-
namic resistance and partitioning between latent and sensible heat
fluxes (Garand, 2003; Umair et al., 2018; Wang et al., 2014; Zheng
etal,, 2012). Previously, similar biases were found in the ERAI associated
with the limitation in the surface scheme for heat and momentum that
used a fixed map of leaf area index and tabulated values of roughness
lengths (Trigo et al., 2015; Trigo and Viterbo, 2003). Thus, these limita-
tions falsely fulfilled the assumption of this study and caused erroneous

detection of irrigation in these areas. Quantitatively, the assumption as-
sociated with LST-based irrigation detection identifies 7851 pixels as ir-
rigated for 2005, out of which 40.77% overlapped with that of GMIA. In
terms of pixels equipped with a different level of irrigation according to
the GMIA, LST detects 39.85%, 20.52%, 22.94%, and 16.68% in slightly,
moderately, highly, and very highly irrigated areas, respectively
(Table 1). Specifically, LST-based irrigation detection can detect micro-
irrigation that barely changes SM and A;. However, it does influence
the local LST due to repartitioning of latent and sensible heat fluxes
(Campra et al., 2008).

3.1.3. An albedo-based irrigation detection map

Fig. 2c shows the spatial distribution of the difference between daily
means of MODIS A; and ERAI A; for 2015. Generally, negative bias in
MODIS is prominent across the globe except for the Sahara Desert and
the southern boundary of the snow line, i.e., north of 40°N, (marked in
the red boxes in Fig. 2¢). The positive bias around the southern bound-
ary of the snow might be caused by ERAI, which underestimates the
fraction of ground covered by snow for shallow snow depths (Oleson
et al., 2003). Moreover, the positive MODIS bias over desert regions
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Table 1
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Quantitative assessment the proposed irrigation map against GMIA, FAO irrigation map, for slightly (5-30%), moderately (30-50%), highly (50-80%), and very high (> 80%) irrigated areas.
The percentage refers to the number of overlapped pixels in certain irrigation class divided by the total number of overlapped pixels.

Proposed Irrigation map of this Slightly Moderately Highly Very highly Total

study/GMIA (5-30%) (30-50%) (50-80%) (>80%) Overlapped New detection Total

Soil moisture No. of pixels 1260 471 306 48 2085 1825 3910
Percentage 60.43 22.59 14.67 2.32 53.32 46.68

Temperature No. of pixels 1204 620 693 504 3021 4830 7851
percentage 39.85 20.52 2294 16.68 40.77 61.52

Albedo No. of pixels 2326 1043 1019 462 4850 5454 10,304
Percentage 47.96 21.51 21.01 9.53 47.07 53.93

Combined No. of pixels 1439 725 773 433 3370 2046 5416
Percentage 42.70 21.51 2294 12.85 62.22 37.78

might be explained by the unique spectral properties of soils that are
not accounted in the ERAI (Oleson et al., 2003; Tsvetsinskaya et al.,
2002). Generally, the A;-based irrigation detection map identifies both
low and high irrigated areas quite well in India, China, Pakistan, and
Europe (Fig. 3c). However, like LST-based irrigation detection, A;-
based irrigation detection map also detects irrigated areas in the south-
western part of the African continent including Ethiopia, Tanzania,
Mozambique, and Zimbabwe (blue box in Fig. 3c), erroneously. This
CE can similarly be explained by the misrepresentation of the surface
energy fluxes in the ERAI (Trigo et al., 2015). Moreover, Tuinenburg
and Vries (2017) showed that in these areas SM addition by assimilation
positively correlates with the precipitation bias rather than blue water
demand, which corroborates false detection of irrigation by LST and
Ar. Moreover, A;-based irrigation detection compensates for the SM-
based irrigation detection in the highly irrigated areas and LST-based ir-
rigation detection in the urbanized areas, where irrigation cooling is
counteracted by the regional urbanization. For 2005, A, detects 10,304
pixels as irrigated, which is almost triple of SM-detection alone, out of
which 47.07% area overlapped with that of the GMIA. The percentage
of detections were higher in the slightly (47.96%) followed by moder-
ately (21.51%), highly (21.01%), and very highly (9.53%) irrigated
areas, respectively (Table 1).

3.1.4. A combined irrigation detection map

Fig. 3d shows the spatial distribution of global irrigated areas de-
tected by combined irrigation detection map. The combined detection
was defined as the simultaneous detection of irrigated areas by a pair
of two variables (SM and LST, SM and Ay, or LST and A;) or by all three
variables, concurrently. Spatially, the patterns of irrigated areas by com-
bined detection are mostly distributed over India, China, Pakistan,
Europe, and southeastern Africa. Compared to the existing global irriga-
tion maps, irrigated areas of Asia and Europe were well outlined. How-
ever, as discussed earlier the irrigated areas in Africa were erroneously
detected by LST and A; because of uncertainty in ERAI to represent the
surface energy fluxes in arid and semi-arid regions. Quantitatively, the
combined detection map for 2005 was comparative to that of SM detec-
tion individually, and the total number of pixels detected was 5416.
Moreover, detection in the very highly irrigated areas (>80%) improved
from around 2.32% (by SM individually) to 12.85% (combined), where
SM is limited in detecting the irrigated areas as a model state variable.
Similarly, in areas with slightly, moderately, and highly irrigated areas,
the overlapped detection was 42.07%, 21.51%, and 22.94%, respectively
(Table 1).

3.2. Comparison with state-of-the-art global irrigation maps

The final proposed irrigation map was obtained by integrating all in-
dividual detection maps, and the overall detection was compared with
the three state-of-the-art global irrigated maps. The spatial patterns of
irrigated areas based on the proposed method matched well with the
reference irrigation maps except in the arid and semi-arid cropland

regions of southeastern Africa and Volga, Russia (blue box in Fig. 4a).
Compared to the GMIA (Fig. 4b), highly irrigated areas of China, India,
and Pakistan were detected well in the combined detection (green
color in Fig. 4a), whereas the moderately irrigated areas of Europe are
mainly detected by A; alone (red color in Fig. 4a). The surface water ir-
rigated areas from GIAM (blue color in Fig. 4c) was mostly detected by a
combined detection or A;-based detection alone. However, the conjunc-
tive ground and surface water irrigation in northeast China and the
CONUS were detected by SM alone. Finally, a comparison with the
most recent global irrigated area maps by Meier et al. (2018) (Fig. 4d)
showed that overall spatial patterns of irrigated areas in both maps
matched satisfactorily in Asia, Europe, and the CONUS. The PA was ap-
proximately 70% with the three benchmarked global irrigation maps.
Specifically, the PA for the proposed irrigation map for 2005 (Fig. S2b)
against the GMIA was 69.06% (Table 2), out of which the highest per-
centage was for the very highly irrigated areas, 86.71%, followed by
highly irrigated areas, 78.07%, moderately irrigated areas, 73.53%, and
slightly irrigated areas, 62.47%. The PA for the proposed irrigation map
for 2000 (Fig. S2a) against GIAM irrigation maps was 60.27%, where de-
tection of the three attributes, i.e., surface water, groundwater, and con-
junctive water used for irrigation were 56.96%, 74.54%, and 79.76%,
respectively. While compared to M18 for 2012, the PA for the proposed
irrigation map for 2012 (Fig. S2¢) was 73.37%. With all the three
benchmarked irrigation maps, the proposed irrigation map showed
low UA, specifically, 36.81%, 44.41%, and 21.07% with GMIA, GIAM, and
M18, respectively. This specifies high CE associated to the spurious rep-
resentation of energy fluxes by ERAI in arid and semi-arid regions of
Africa and Volga, Russia.

3.3. Comparison with regional/local scale irrigation datasets

The proposed irrigation map was assessed regionally by comparing
with MIrAD over the CONUS for 2012 (Ozdogan and Gutman, 2008)
and remotely sensed high-resolution irrigation map over India
(Ambika et al.,, 2016) for 2015. The results of regional/local scale assess-
ment are demostrated in Table 3. Overall, the proposed irrigation map
did not match well with the MIrAD irrigation map in the CONUS. The
low PA (33.33%) and UA (19.31%) specify substantial OE and CE in the
proposed method, respectively. The OE was primarily centered in the
arid regions of the western CONUS (Colorado, Idaho, New Mexico,
Utah, Wyoming), where irrigation practices are dispersed and heterog-
enous, thus, mainly constrained to canyons (Zaussinger et al., 2019).
Consequently, coarse-scale irrigation map of this study was unable to
identify the small scale irrigation practices of these areas. Conversely,
the CE mainly prevails in humid regions of the eastern CONUS (lllinois,
Indian, lowa, and Ohio), where irrigation is mainly supplemental. De-
spite these OE and CE, the proposed irrigation map closely agreed to
MIrAD in key irrigated areas such as California (PA = 31.04% and UA
= 61.36%), Washington (PA = 59.09% and UA = 54.17%), and Missis-
sippi (PA = 80.00% and UA = 61.64%). In India, the proposed irrigation
map showed good agreement with the irrigation map by Ambika et al.
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(2016). The results in terms of PA and UA (71.97% and 70.44%) specifies
low OE and CE. This result corroborates the ability of the proposed
method to detect irrigated areas over India. Moreover, a recent study
by Singh etal. (2017) also showed that AMSR-E could detect the shifting
time of the irrigation practices in north western India. Moreover, the
proposed irrigation map was assessed with the field inventory data
compiled by the University of Nebraska by using multi-year Landsat
and aerial imagery around year 2005. The results showed strong agree-
ment exhibiting high values of PA (78.82%) and UA (81.23%).

To conclude, the existing global irrigation maps are a substantial
source of information for the spatial extent of irrigation; however, de-
pending on the data or method used, they certainly have shortcomings
in representing the actual global irrigated areas. For example, the FAO
maps were primarily based on statistical information for 2005. How-
ever, the actual area of irrigated land may increase or decrease driven
by each year's water supply and demand (Wisser et al., 2008). More-
over, climate change, advances in genetic engineering and other
agriculture-based technologies, and virtual water trade can reshape
the spatial distribution of irrigated areas. Similarly, IWMI's GIAM was

a) Global irrigation map by the proposed method
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developed based on vegetation cover and potential of areas for irriga-
tion. However, these variables do not directly link to actual irrigation.
Recently, Meier et al. (2018) revised the global irrigation maps by com-
bining statistics, remote sensing, and agriculture suitability data using
multi-decision tree approach and a multi-temporal vegetation index,
i.e.,, Normalized Difference Vegetation Index data. However, their results
deviate from official statistics because of classification errors in the
input datasets. A major issue with the existing global irrigation maps
is the inconsistency associated with the definition of irrigation and ref-
erence year. Moreover, these irrigation maps follow a complicated pro-
cedure and are difficult to update because of the changing application
rate and patterns due to population growth and climate change (Oki
and Kanae, 2006). Additionally, previous studies have employed various
parameters to detect irrigation, such as ET, vegetation dynamics, and ir-
rigation water requirement, which do not truly reflect the actual appli-
cation of irrigation water (Meier et al., 2018; Thenkabail et al., 2009).
Thus, it is very important to develop irrigation maps considering vari-
ables that are directly linked to the irrigation application to represent
actual irrigated areas rather than potential irrigated areas. In this regard,
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Fig. 4. Spatial extent of global irrigated areas (a) Combined soil moisture, temperature, and albedo in this study and state-of-the-art global irrigation maps (b) Global map of irrigated areas,

FAO, (c) Global irrigated area map, IWMI, (d) Global irrigated areas by Meier et al. (2018).
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this study utilized the concept of backward hydrology to detect global
irrigated areas. The major advantage of the currently proposed method
is to obtain irrigation map depicting actual irrigated areas rather than
areas that have potential to be irrigated. Secondly, LST- and A;-based ir-
rigation detection has the potential to detect the micro-irrigation which
do not influence the local SM, directly. Thirdly, this method is quite sim-
ple, easily replicable, dispensable to training datasets, and capable of
mapping historical irrigated areas. Currently, the high temporal resolu-
tion of the satellite and modeled datasets have not been manifested di-
rectly in this study, however, it can easily be improvised to identify the
irrigated areas in near-real time due to spatio-temporal continuous ob-
servations from satellite and reanalysis simulations. Moreover, this
method can further be utilized to quantify the global irrigation water
use, as recently derived by Zaussinger et al. (2019) over the CONUS.
Apart from the above-mentioned advantages, we acknowledged the po-
tential limitations of the current method, i.e., the coarse-spatial resolu-
tion and violation of the assumption due to systematic errors of the
datasets. However, these can be overcome in the future the by evolution
of satellite remote sensing and improved model parameterization.

Above all, we believe that the method proposed in this study, as
stand-alone or in combination with the previously developed map,
will add value to accurately detect the spatial extents of irrigated areas
that are hotspots for biosphere-atmosphere interactions and minimize
the substantial uncertainties in climate change projections.

4. Conclusion

Despite its importance in world food security and impact on local
and regional climates, reliable information on the spatial extent of irri-
gated area remains uncertain. To address this shortcoming, an intuitive
method was proposed to detect and verify the spatial extent of global
actual irrigated areas using the aftereffects of irrigation, i.e., change in
SM, LST, and A;. This was accomplished by following the assumption
that modeled datasets do not incorporate irrigation schemes, whereas
satellite-based remote sensing has the potential to capture irrigation
signals (Kumar et al., 2015; Lawston et al., 2018). The comparison
with the three state-of-the-art irrigation maps, developed by the FAO
(GMIA), IWMI (GIAM), and M18 showed that the individual detections
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Table 2
Accuracy assessment of the proposed irrigation map against the three state-of-the-art
global irrigation maps.

Method Attributes Producer's accuracy  User's accuracy
(%) (%)

GMIA (FAO) Overall 69.06 36.81
Slightly (5-30%) 62.47 -
Moderately (30-50%) 73.53 -
Highly (50-80%) 78.07 -
Very highly (>80%) 86.71 -

GIAM (IWMI) Overall 60.27 44.41
Surface water 56.96 -
Ground water 74.54 -
Conjunctive use 79.46 -

Meier et al. (2018) 73.37 21.07

by SM, LST, and A, had discrepancies due to uncertainties in the
datasets. For example, SM was unable to detect very highly irrigated
areas in India and California, the CONUS (> 80% according to GMIA),
and LST and A, detected false irrigated areas in the semi-arid regions
of Volga, Russia, and Southeastern Africa. Generally, the final irrigated
area map obtained by merging the individual detection maps (SM,
LST, A;, and combined) matched well with the three state-of-the-art
global irrigation maps and regional to local scale irrigation data,
exhibiting PA of approximately 70%. The irrigation map based on the
proposed method for 2015 is available for download at (http://ersl.
skku.edu/bbs/board.php?tbl=noticekmode =VIEW&num=
8&category==&findType=&findWord==&sort1==&sort2=&it_id=
&shop_flag=&mobile_flag=&page=1), and is available from the au-
thors on request.

Overall, the spatial extents and distributions of actually irrigated
areas obtained in this study, as a stand-alone or in combination with
the existing irrigation maps, will improve our understanding of
biosphere-atmosphere interaction, minimizing uncertainties in the cli-
mate projections, and benefits climate researcher to define future sce-
narios regarding changes in the extent of irrigated areas. Moreover,
future research will focus on quantifying irrigation water and irrigation
scheduling for better crop production.
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