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Abstract The amount of soil water in the topsoil layer (from 0 to 10 cm) has been regarded as a key factor
in controlling land-atmosphere interaction by determining the fraction of net radiation. In the present study,
we investigate spatial trends of the stored precipitation fraction in the topsoil layer for varying vegetation
and aridity indices by utilizing four satellites and two reanalysis data sets on a global scale. Using the Budyko
framework, we relate climate regimes to the stored precipitation fraction on a global scale. A positive
relation between the stored precipitation fraction with aridity index and a negative relation between the
stored precipitation fraction and free parameter, vegetation optical depth, and isohydric slope are
discovered. Even though the stored precipitation fraction values were calculated from different soil moisture
and precipitation sources, they share an similar spatial trend: the drier and less vegetated the soil is, the
more precipitation is retained in the top layer of the soil. Specifically, the topsoil retains 37% + 11% of
precipitated water three days after a rainfall event where the aridity index was greater than 5. Over wet
and forest areas, due to large runoff fluxes and plants intercepting water before the precipitated water
reached the ground, the topsoil retains 21% + 2% of precipitated water three days after a rainfall event.
Furthermore, by using the modeled data sets in the calculation of the stored precipitation fraction metric, we
are able to conduct a sensitivity analysis of Fp(f) metrics with respect to different sampling frequency values.

1. Introduction

Soil moisture plays a critical role in the global water cycle since the interaction between land and
atmosphere is governed by the amount of moisture in the topsoil layer (Famiglietti et al., 1995; Hirschi
et al., 2011; Lakshmi et al., 2004; Seneviratne et al., 2010; Tuttle & Salvucci, 2016). The variability of the
near-surface atmospheric conditions (e.g., humidity, dust particles, and temperature profiles) have
demonstrated high correlation with extreme climate events such as droughts, dust outbreaks, floods, and
wildfires. In addition, soil moisture plays an indirect but important role is that latent and sensible heat fluxes
are controlled by surface soil moisture, which affects boundary layer stability and low-altitude atmospheric
conditions (Brocca et al., 2017; Crow et al., 2018; Delworth & Manabe, 1989; Haarsma et al., 2009; Kim et al.,
2017). Even though surface soil moisture can be decoupled from root-zone soil moisture over
dry-environment conditions (Hirschi et al., 2014), surface soil moisture can be a good indicator of the
variability of deeper soil moisture in many cases (Choi & Jacobs, 2007; Dong & Crow, 2019; Qiu et al.,
2016; Zohaib et al., 2017). Furthermore, the forecasting of extreme climate events can be significantly
improved by investigating the residence time of soil moisture since soil moisture has a distinctively longer
memory than other land surface variables (e.g., evapotranspiration and temperature) and atmospheric
anomalies (e.g., dust storms and cyclones; Orth & Seneviratne, 2012); thus, knowledge of the dynamics of
surface soil moisture is of importance in climate forecasting on seasonal time scales.

The residence time of surface soil moisture has been actively analyzed at scales ranging from the point to
regional scales (Entin et al., 2000; Seneviratne et al., 2006). Soil moisture residence, also known as soil
moisture memory, is often quantified by the implicit calculation of lag correlation of soil moisture or explicit
estimation of a soil moisture memory time scale over specific time frames using long-term observations.
Many previous researchers have conducted studies using a model or point-scale observation. However, in
situ data-based estimations of soil moisture memory are limited in their ability to represent large-scale
characteristics due to sparse and uneven locations of observations and heterogeneity of study regions. On
the other hand, model-based estimates, which can fill in the missing pieces of in situ observations, have a
different drawback: the calculated surface soil moisture memory can vary significantly from model to
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model because of very different soil moisture dynamics, even when the models are driven by the same
meteorological forcing (Dirmeyer et al., 2006; Koster et al., 2009). In addition, previous large-scale estima-
tions of soil moisture memory studies have been limited to providing a proper understanding of residence
time of soil moisture due to use of low temporal resolution data sets. In order to overcome the above limita-
tions, and to track an increase in soil moisture corresponding to precipitation events, McColl et al. (2017)
proposed a new metric called the stored precipitation fraction (Fp(f)) (McColl et al., 2017), which can be
related with soil moisture residence time. This new measure of soil moisture dynamics is based on the
sum of positive soil moisture increments, total precipitation, sampling depth, and data sampling frequency
(fday ") during the specified period. In contrast to other soil moisture memory metrics, the Fp(f) metric can
provide the actual fraction of moisture remaining in the topsoil layer after 1/f day(s) following a rainfall
event. That is, the Fp(f) metric can provide a clue to the complex hydrological processes taking place during
sampling gaps. In addition, the Fp(f) metric can provide even more unique information about the remaining
amount of precipitated water if a high-frequency sampling data set is employed. For example, if we have a
data set which samples instantaneous soil moisture values at a frequency f, this metric can provide the frac-
tion of remaining precipitated water in the soil layer after n (integer) x 1/fday(s) of a rainfall event (detailed
information can be found in section 3.2). In addition, the Fp(f) equation does not require monthly or yearly
observations to calculate time series autocorrelation, and it does not depend on data types—it can be calcu-
lated from short-term data set with in situ, satellite-based, and modeled data sets. However, with an irregular
temporal sampling data set, the data set should be refined to include a fixed data sampling frequency before
the Fp(f) calculation is performed. For example, soil moisture retrieval satellite systems in Sun-synchronous
orbit can provide soil moisture estimates with relatively fixed data sampling frequency, while soil moisture
retrievals from a non-Sun-synchronous orbit which is based on the signals of opportunity produce an irregu-
lar data sampling frequency (Kim & Lakshmi, 2018); this kind of irregular data should be refined to produce
a fixed data sampling frequency.

Significant strides have been made in estimating surface soil moisture from space at global and regional
scales with relatively high spatial and temporal resolution (Burgin et al., 2017; Karthikeyan et al., 2017;
Kim & Lakshmi, 2018). However, as with land surface models, microwave satellite-based soil moisture
retrievals from different observation systems bear innate systemic and algorithmic limitations. For example,
(1) low microwave frequency bands are susceptible to radio frequency interference (de Nijs et al., 2015); (2)
the assumption of the soil moisture retrieval algorithms, such as thermal equilibrium and uniformity at 6 a.
m., are violated in certain land cover conditions; and (3) signals from deeper layers cause unpredictable
volume scattering over arid areas, and microwaves cannot penetrate high vegetation mass over densely
forested regions. These limitations can cause erroneously high or low surface soil moisture retrievals (Kim
et al., 2018). Therefore, it is plausible to assume that the Fp(f) metric would show different behavior with
respect to its input variables: different soil moisture and precipitation products. As Fp(f) is a new metric,
no study has yet been conducted to investigate the sensitivity of Fp(f) metrics with respect to data sources
with different data sampling frequencies and characteristics of Fp(f) value with respect to different environ-
mental conditions and land cover types.

The present research seeks to elucidate the priorities of the following questions: (1) do different soil
moisture inputs from different microwave frequency-based satellite soil moisture retrievals (e.g., L-, C-,
and X-bands) and off-line and coupled land surface models show different global trend in Fp(f)?; (2)
how does the Fp(f) value change with respect to different f values?; (3) what fraction of precipitated water
can be retained in the topsoil layer after a series of rainfall events over a certain period of time, and what
factors can affect the amount of stored precipitated water in the ground over arid and wet regions?;
and (4) how do vegetation conditions control the variability of Fp(f) on a global scale? Answering these
questions will provide us new insights into the implementation of satellite-based Fp(f) as well as
model-derived Fp(f) metrics; thus, it can aid in the future application of the Fp(f) metric in climate and
hydrology applications.

2. Data Sets

Fp(f) metrics were calculated using four remotely sensed surface soil moisture data sets, half-hourly Global
Precipitation Measurement (GPM) data, and two reanalysis data sets over the time period of January 2016 to
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Table 1

Product Descriptions

Product Spatial Projection Latitude, Temporal

Name Variables Resolution Information longitude  Resolution Data Information

GLDAS SM, ST, P 0.25° x 0.25° Equiangular 720 X 1440 3-hourly = GLDAS Noah Land Surface Model L4

NOAHO025_ 3-Hourly 0.25 X 0.25° v2.1
3H (V1) (https://search.earthdata.nasa.gov/search)
ERA-Interim  SM,ST,P  0.25° X 0.25°  Equiangular 720 X 1440  6-hourly = ERA Interim, Daily
land (http://apps.ecmwf.int/datasets/data/interim-land/type=an/)
SMAP SM SM 36 km X 36 km EASE2 406 X 964 Varies SMAP L3 Radiometer Global Daily 36 km EASE-Grid Soil
Moisture, version 4 (https://search.earthdata.nasa.gov/search)
ASCAT SM SM 25 km Equiangular 720 X 1440 Varies H-SAF H102 MetOp-A ASCAT NRT SSM orbit geometry 25-km
resampled sampling (WARP NRT 3.1.0)
to GLDAS
AMSR2 SM SM 0.25° x 0.25° Equiangular 480 x 1440 Varies Land parameter retrieval model (Parinussa, de Jeu, et al., 2016;
Parinussa, Lakshmi, et al., 2016)

SMOS SM SM 25km X 25 km EASE Grids 584 X 1388 Varies The SMOS INRA-CESBIO (SMOS-IC) from https://www.catds.
version 1/2 of fr/Products/Available-products-from-CEC-SM/SMOS-IC
25-km spatial
resolution

GPM P P 0.1° x 0.1° Equiangular 1800 % 3600 Half- GPM_3IMERGHH: GPM IMERG Final Precipitation L3 Half-

hourly Hourly 0.1°%0.1° v04 (https://search.earthdata.nasa.gov/

search)

Note. SM = Soil moisture; ST = Surface temprature; P = Precipitation.

December 2016 (Table 1). All Fp(f) metrics from different data sources were calculated with their original
data projections, and the final Fp(f) metrics were reprojected into a regular 0.25° using a nearest-neighbor
approach. Detailed information regarding the vegetation, and isohydricity slope data sets (Text S1), is
included in the supporting information.

2.1. Satellite Data Sets

2.1.1. Soil Moisture Active Passive

The Soil Moisture Active Passive (SMAP) mission was launched in January 2015 (Entekhabi et al., 2010) and
provides estimates of the moisture content of the top 0-5-cm soil layer in a near-polar and Sun-synchronous
orbit with a revisit time of two to three days if the satellite overpasses the Equator at approximately 06:00 and
18:00 local time in descending and ascending orbits, respectively. Soil moisture product is derived from
brightness temperature (Tb) observations provided by a low microwave frequency L-band radiometer
(1.41 GHz, wavelength = 21 cm; O'Neill et al., 2015). In the present study, we considered the standard global
daily 36-km spatial resolution level-3 SMAP soil moisture product from ascending and descending overpass
time observations. The SMAP data were masked for soil moisture lower than 0.02 m®> m™ and higher than
0.50 m®> m ™, and the retrieval information in the retrieval quality flag showed recommended quality (0 bit).
2.1.2. Soil Moisture and Ocean Salinity

The Soil Moisture and Ocean Salinity (SMOS) satellite was launched in November 2009. The SMOS accuracy
requirements are 0.04 m* m™> at a depth of 3-5-cm surface soil moisture with a revisit every two to three
days (Kerr et al., 2001). SMOS provides estimates of the surface soil moisture in a near-polar and Sun-
synchronous orbit, ascending in the morning at 06:00 local time and descending at 18:00 local time. The
SMOS instrument is an L-band (1.41 GHz, wavelength = 21 cm) 2-D interferometer radiometer. In this
study, we used the newest SMOS product, called SMOS-Institut National de la Recherche Agronomique-
Centre d'Etudes Spatiales de la BIOsphere (SMOS-IC) product. The SMOS data were masked for soil moist-
ure where the data quality flag was set to 1 (not recommended data quality). This masking process allowed
for high-quality information in the soil moisture data considered (Fernandez-Moran et al., 2017).

2.1.3. Advanced Scatterometer

The MetOp-A satellite, which was considered in this study, was launched into a Sun-synchronous orbit in
October 2006 and has been operational since May 2007. The Advanced Scatterometer (ASCAT) is an active
system microwave remote-sensing instruments operated by the European organization. ASCAT acquires
radar backscatter measurements at a frequency of C-band (5.3 GHz, wavelength = 5.7 cm) and has a
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spatial resolution of 25 km with a one-to-three-day revisit time (Wagner et al., 2013). The ASCAT overpasses
at 09:30 local time in descending orbit, and at 21:30 local in ascending orbit. The surface soil moisture con-
tent from ASCAT, so-called degree of saturation, was obtained from EUMETSAT site. This value was calcu-
lated from the basic measurement ASCAT—which is the backscattering coefficient (o°) measured at a
reference angle of 40° and based on the method of Wagner et al. (1999). For details about the change detec-
tion algorithm, please refer to Wagner et al. (2013). The porosity values were estimated by applying the equa-
tions of Saxton and Rawls (2006), and the texture characteristics were obtained from the Harmonized World
Soil Database (Nachtergaele et al., 2009). The ASCAT data were masked, where wetland fractions >15%,
topographic complexity >20%, surface soil moisture error >10%, and soil temperature was below the freez-
ing point (Paulik et al., 2014).

2.1.4. Advanced Microwave Scanning Radiometer 2

The Advanced Microwave Scanning Radiometer 2 (AMSR2) sensor onboard the Global Change Observation
Mission 1-Water platform was launched in May 2012. It utilizes three different microwave frequency bands
at C1 (6.9 GHz, wavelength = 4.3 cm), C2 (7.3 GHz, wavelength = 4.1 cm), and X (10.6 GHz, wave-
length = 2.8 cm), for surface soil moisture retrievals. The original ground resolutions depend on frequency
channels (C1-band: 24 x 42 km, C2-band: 34 x 58 km, X-band: 35 X 62 km) with a revisit time of one to two
days, and the AMSR2 crosses the equator at 01:30 local time and 13:30 local time in descending and ascend-
ing orbits, respectively (Maeda & Taniguchi, 2013). In this study, we used the most recently improved Land
Parameter Retrieval Model AMSR2 data set with minimum radio frequency interference contamination
(Kim et al., 2018; Parinussa, de Jeu, et al., 2016; Parinussa, Lakshmi, et al., 2016).

2.1.5. Global Precipitation Measurement

Launched on 20 February 2014, by NASA the National Aeronautics and Space Administration (NASA) and
the Japan Aerospace Exploration Agency (JAXA), GPM is an international satellite mission intended to
provide next-generation observations of precipitation and snowfall with a global scale every 3-hr. The
GPM Core Observatory has a Ka + Ku radar and a 13-channel microwave radiometer (Huffman et al,,
2014). There are many products available from the GPM Core Observatory; of relevance to present work
are those associated with a high-quality, late-run GPM Core Observatory product that anchor a constellation
of partner satellite radiometers used in producing the Integrated Multi-satellitE Retrievals IMERG) at a
temporal scale of every 30 min with 0.1° grid boxes. We used GPM IMERG Final precipitation L3 half-hourly
data to calculate the satellite-based Fp(f) metric.

2.2. Reanalysis Data Sets

In the present research, we investigated how the Fp(f) value can vary with respect to different f values.
Specifically, with regard to the high-frequency sampling data characteristics of reanalysis data, the use of
reanalysis data would answer two questions: why the Fp(f) value from high-sampling frequency data should
be subsampled in order for comparison with the satellite-based Fp(f) calculation and how the Fp(f) value
changes with respect to different f values. It is clear from satellite-based soil moisture data, with current
microwave-based soil moisture retrievals satellite systems in Sun-synchronous orbit such as SMAP,
SMOS, MetOp-A, and GCOM-W1, it is impossible to have Fp(f) values higher than f ~= 1/3 days. Here
we have noted that the model data cannot be regarded as the true value. However, in order to investigate
higher sampling frequencies than those possible with satellite-based soil moisture data, using modeled soil
moisture data is necessary; thus, in this study, we assumed that reanalysis data would be sufficient as an
indicator of soil moisture states based on numerous previous studies (Liu et al., 2011; Spennemann
et al., 2015).

2.2.1. Global Land Data Assimilation System

Global Land Data Assimilation System-1 (GLDAS) Noah available from 2000 onward (GLDAS-1) provides
numerous atmospheric and land surface variables with a temporal resolution of 3-hr and a spatial resolution
from 0.25° X 0.25° to 1° X 1°. GLDAS is a worldwide modeling system based on various satellite- and ground-
based observations that produces the best estimation of land surface conditions (Rodell et al., 2004). The
GLDAS precipitation value represents the past 3-hr averaged precipitation amount, while soil moisture
and surface temperature are instantaneous variables. In the present study, we used the GLDAS data to cal-
culate Fp(f) using soil moisture from the topsoil layer of 0-10 cm and precipitation variables. Soil moisture
value was masked out where surface temperature was below 273.15 K.
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2.2.2. European Reanalysis Interim

The European Reanalysis Interim (ERA-Interim) product, created by the European Centre for Medium-
Range Weather Forecast, has been available since 1979, and its analysis is expected to continue through
the end of 2018. ERA-Interim provides numerous atmospheric and land surface variables with a temporal
resolution of 3-hr and a spatial resolution from 0.125° x 0.125° to 3° X 3° (Dee et al., 2011). This data set
provides instantaneous and accumulated forecast variables. Soil moisture and surface temperature, as
instantaneous parameters, represent time scales equal to the model time step, while accumulated para-
meters, such as precipitation value, are accumulated from the start of the forecast. For detailed informa-
tion, please refer the following link: https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era-
interim. In this study, we used the ERA-Interim data set for the calculation of the ERA-Interim-based
Fp(f) metric using the top volumetric soil water layer 1 (0-7 cm), topsoil temperature layer 1, and
large-scale precipitation variables. Soil moisture value was masked out where soil temperature layer
one was below 273.15 K.

3. Methodology
3.1. The Stored Precipitation Fraction Fp(f) From the Satellite Data Sets

The stored precipitation fraction Fp(f) was proposed by McColl et al. (2017) as follows:

n

- AG;
Fo(f) = Ag 220 M)

foP(t)dt

where
A6;., if A6;>0and AP;>0
AQHZ{ b ¥ ) . l ©)
0, otherwise

where Az is the soil layer depth (m), A6; is 6; — 6; _ 1, n is the number of valid cases of equation (2), P is the
precipitation (m), fis a data sampling frequency (day™*), and T (day) is the length of the sampling period.
Specifically, the denominator of equation (1) represents the amount of accumulated precipitation events
during the study period only when the equation (2) condition was met. Az values are set to 0.05, 0.1, and
0.07 m for each satellite-based product, GLDAS, and ERA-Interim soil moisture products, respectively.
For example, the Fp(f) value for the GLDAS data set (e.g., f = 8 and Az = 0.1 m) indicates the average
proportion of precipitation falling on a soil layer that is still present in the soil layer (0-10 cm) after
1/8 days (or after 3-hr). In addition, we added a AP; > 0 condition in equation (2), rather than simply
assuming that A8 > 0 was a positive value only when precipitation occurred. We found that many pixels
showed positive AG without a precipitation event. Cases where AP; = 0 but A6 > 0 may occur due to
irrigation, but they may also occur as a result of errors in soil moisture and precipitation observations. We
will discuss this masking impact on the Fp(f) calculation in depth in section 4.1.

3.2. The Calculation of the Stored Precipitation Fraction Using High-Frequency Data Sets

The highest data sampling frequency of global-scale assimilation soil moisture and precipitation data is lim-
ited to 8 day~* (i.e., GLDAS and ERA-Interim). Thus, we have shown here the importance of selecting storm
event(s) of a particular timing for the Fp(f) calculation when using high sampling frequency data from
GLDAS and ERA-Interim data sets.

In McColl et al. (2017), Fp(f) was defined as “the average proportion of precipitation falling on a soil layer
that is still present in the soil layer after 1/f days.” To fully maintain the original significance of the Fp(f)
metric from the reanalysis data set-based Fp(f) calculation (i.e., the calculation of Fp(f) with a higher fre-
quency sampling of soil moisture data), storm event(s) was(were) deliberately chosen. Figure 1a shows an
example of a soil moisture time series from the GLDAS product with an 8 day™* sampling frequency (black
dots) and a soil moisture time series of 1/3 day ' sampling frequency (red dots) with precipitation events.
Here we have noted two cases of storm events in order to illustrate how the high sampling frequency data
set-based Fp(f) was calculated in this study.
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Figure 1. (a) Illustration of soil moisture variability with different sampling frequencies (f day ) with storm events. The
black dots and solid line represent a high sampling frequency data set (i.e., reanalysis data f=8day ) and the red
dots and line represent a low sampling frequency data set (i.e., satellite data; f=1/3 day ) In each series of storm event
shown in the top part of Figure 1b, two soil moisture values of low sampling frequency data (green circles) and two soil
moisture values of high sampling frequency data (blue circles) are illustrated. In this study, the incremental of soil
moisture after end of the storm event(s) (A8yy) is considered to calculate the Fp(f) value using reanalysis data sets.

In the first case (upper axis marked as Case 1 in Figure 1b), the precipitation fraction with f= 1/3 can be

calculated thus:
1 A6} A6}
FP<7) :ﬁAZ:iAZ
3/p [P [P+ fP)

Fp(f)y, indicates a short-term Fp(f) value for P, storm events (n = 1 and 2) with low sampling frequency soil
moisture data. In this case, AGi has been calculated following two individual storm events, as shown by the
time interval between the two green circles. In the present study, however, we used the A@}{ value, as shown
by the time interval between the two blue circles, since that is the soil moisture increment 1/f day(s) after end
of storm event(s). With storm event Case 1, the various Fp(f); 1/f day(s) after end of storm events can be cal-
culated. For example, Fp(1/2);; can be calculated as follows:

1 1
Fp (1) = A_GHAZ — AeH Az
2)n jPl jPz

Fp(f)y indicates a short-term Fp(f) value for a P} storm event (n = 2) with high sampling frequency soil moist-
ure data. For equation (1), we sum up all Ay cases for the numerator and integrate precipitation events that
contribute to the ABy value for the denominator.
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Figure 2. Maps of precipitation fraction based on six different sampling frequencies of GLDAS data: (a) f= 8 day_l, b)f=2 day_l, ©f=1 day_l, (d)f=1/2 day_l,

(e)f=1/3 day_l, and (f) f=1/4 day™

L Top and right panels indicate longitude and latitude zonal means of Fp(f), respectively. Inset graphs represent PDF for each

data set, marker sizes in zonal plots illustrate proportional to zonal land area, and the shaded region shows +1 standard deviation. The opaque circle values in the
zonal plot correspond to the zonal mean surface soil moisture.

With this selective process, Fp(f) calculation using reanalysis data represents the average proportion of
precipitation falling on a soil layer that is still present in the soil layer 1/f day(s) after storm events. Please
note that 1/fis the time difference between the blue circles. Similarly, for the second case (upper axis marked
as Case 2 in Figure 1(b)), there were four precipitation events over the course of three days: P;2, P,% P5% and
P, (the time interval between the two green circles). In this case, we could calculate various Fp(f)y; 1/f day(s)
after storm event(s), such as Fp(18/24)y (the time interval between the two blue circles), instead of Fp(1/3);,
(the time interval between the two green circles) as follows:

P <L3> _ A6y Ag= Ay Az
24 " jPZ j‘PZ

Figure 2 shows the maps of Fp(f) based on different sampling frequencies of GLDAS data. We found that
Fp(f) from higher f value reanalysis data showed higher values of Fp(f) than lower fvalue reanalysis-based
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Figure 3. (a) ET/P from equation (3) for different values of the w parameters are shown with variously colored solid lines.
The original Budyko curve is also presented with a solid black line. (b) The global-scale map of the w parameter.

Fp(f) calculations—more positively skewed distribution from lower sampling data-based Fp(f) values (i.e.,
the lower median for the lower f sampling data-based Fp(f) values). The reason for this is clear: the total
loss of soil moisture due to evapotranspiration, drainage, and runoff is much greater three days after
rainfall event(s) (Figure 2e) than 3-hr after rainfall event(s) (Figure 2a). This result indicates that
comparing the Fp(8) from default sampling frequencies of reanalysis data with the Fp(1/3) from satellite
products would not produce any meaningful result; thus, reanalysis products should be subsampled to
have the same sampling frequency as satellite products when reanalysis-based Fp(f) values are compared
with satellite-based Fp(f) values. The global average of Fp(1/3) is 0.31, which means that 31% of
precipitated water remains in the topsoil layer 3-hr after rainfall event(s). In order to compare satellite-
and reanalysis-based Fp(1/3), two reanalysis data sets (i.e., GLDAS and ERA-Interim) were subsampled to
estimate Fp(1/3) values. In other words, the time interval between every adjacent sampling of GLDAS soil
moisture data was set to 72 hr. These reanalysis-based Fp(1/3) results were then compared with satellite-
based Fp(1/3) (please refer Figure 4 in section 4.2).

Furthermore, it is important to recall the advantage of the Fp(f) metric and the reason for using
reanalysis data in the Fp(f) calculation. Fp(f) is a measure of soil moisture memory that is dominated
by drainage. The use of Fp(f) is advantageous in these circumstances because it can be estimated solely
from the time series of soil moisture and precipitation that can in turn be estimated directly from satel-
lite observations; thus, calculating Fp(f) from observation data sets is useful since reanalysis fields of soil
moisture can be erroneous. However, in this study, we used reanalysis to investigate the sensitivity of the
Fp(f) metric with respect to f values and to understand why different f-based Fp(f) values cannot be
used interchangeably.

3.3. Aridity Index and w Parameter From the Budyko Framework

We considered the ratio between potential evapotranspiration (PET) and precipitation (P) to investigate the
impact of atmospheric evaporative demand on the variability of the Fp(f) value. The aridity index commonly

_ PET
denoted as [¢] = [13] ] has been widely used for the investigation of the Budyko framework (Gentine et al.,
2012), where [PET | is the climatological annual PET and [P] is the climatological annual precipitation (over-
bars refer to yearly means and brackets indicate long-term climatological means). In addition, the Budyko
curve can be represented with evapotranspiration ET/P as a function of ¢ (Figure 3a). In the present
research, we used an analytical solution to the Budyko framework following previous research by Padrén

et al. (2017) to calculate w parameter. This analytical equation is derived by combining dimensional analysis
and mathematical reasoning as follows:
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el=
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where w refers to a free parameter that integrates the net effect of all controls except ¢ on the partitioning of
P into ET and runoff. The w can be interpreted thus: the higher the w is, the higher the favorability of the ET
condition is. In other words, pixels with the same value of ¢ but with higher w parameter have land cover
conditions that favor ET over runoff (Padrén et al., 2017). The aridity index (¢) values and the w parameters
were calculated from GLDAS V2.0 using 63 years of data sets (from 1948 to 2010) on a global
scale (Figure 3b).

A more detailed discussion of the methodology and the additional data sets can be found in the supporting
information Burgin et al. (2017), Diem et al. (2014), Gruber et al. (2016), Holmes et al. (2006), Maggioni et al.
(2016), and Owe et al. (2001).

4. Results and Discussion
4.1. The Probability of A6 > 0 When AP; =0

It is found that many pixels showed positive AG without a precipitation event. Cases where AP; = 0 but
AB > 0 can occur not only due to irrigation but also due to errors in soil moisture and precipitation observa-
tions. In the first case, the irrigation effect can be significant over areas where irrigation occurs on an extra-
ordinary scale. However, a few irrigated farms in a 40-km pixel might not substantially alter the 40-km
average soil moisture observed by a satellite. In the other case, random, time-varying errors in soil moisture
and precipitation observations can also lead to frequent cases where AP; = 0 but A8 > 0. Figure S1 was
included to investigate this effect on Fp(f) calculations by utilizing SMAP and GPM data sets. Figure Sla
illustrates the probability of A@ > 0 when AP; = 0 during the study period. Figure S1b shows the global irri-
gation map from the Global Map of Irrigation Areas (Siebert et al., 2005). If we assume that Global Map of
Irrigation Areas is the ground-truth data of irrigation areas, it is clear that the case A8 > 0 when AP; = 0 is
common even in nonirrigated areas (Figure S1c). However, as shown in Figures Slc, this case is more fre-
quent over irrigated regions than other areas.

4.2. Intercomparison of Fp(f) Metrics From Satellite and Reanalysis Data Sets

Figure 4 illustrates the maps of Fp(1/3) from (a) SMAP-GPM-based, (b) SMOS-GPM-based, (c) ASCAT-GPM-
based, (d) AMSR2-GPM-based, (¢) GLDAS-based, and (f) ERA-Interim-based calculations. The PDF of both
satellite-estimated Fp(1/3) and reanalysis-estimated Fp(1/3) have right-skewed spatial distributions. Over
sparsely vegetated regions (Figure S2a) all Fp(1/3) except ERA-Interim show higher Fp(1/3) than densely
forested regions; ERA-Interim-based Fp(1/3) values do not show this contrast as strongly as other Fp(1/3)
values. Furthermore, the Contiguous United States (CONUS) present a distinctive feature: the western side
of the CONUS regions have a relatively higher Fp(1/3) (average Fp(1/3) = 0.29 £ 0.06) than the eastern side
of the CONUS regions (average Fp(1/3) = 0.15 + 0.07; latitude ranges between 25° and 53° and longitude
ranges between —120° and —67° in Figure 4). The longer residence of the precipitation falling on the top
layer of the soil (i.e., high Fp(1/3)) indicates a lower drainage rate from the topsoil layer over Western
CONUS. However, this process-level conclusion should be made carefully here since a similar pattern with
a higher f value-based Fp(f) calculation could also indicate the presence of significant surface runoff in
Eastern CONUS. The previous study showed that groundwater depletion, defined as long-term water-level
declines, is a problem in the Western CONUS (Famiglietti et al., 2011; Konikow, 2015). Therefore, high
F(f) over the Western CONUS areas can be interpreted as groundwater depletion. If more precipitated water
remained in the topsoil layer, less water would reach the water table, and this would cause a long-term
decline in water levels. In other words, as a result of high Fp(f), Western CONUS could have a serious
groundwater depletion due not only to the low amount of precipitation but also to the large fraction of stored
precipitation in the topsoil layer. Furthermore, the average aridity indices are 3.93 and 1.08 for the western
and eastern parts of CONUS, respectively (Figure 5). Thus, the high Fp(f) value could be due to environmen-
tal conditions becoming drier, meaning more precipitated water would be captured in the topsoil layer, con-
sequently leading to groundwater depletion. In addition, it is worth noting that the interpretation of current
results is strongly dependent on whether the increased Fp(f) is due to increased infiltration or decreased
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Figure 4. Global maps of Fp(1/3) for (a) SMAP, (b) SMOS, (c) ASCAT, (d) AMSR2, (e) GLDAS, and (f) ERA-Interim. Top and right panels indicate longitude and
latitude zonal means of Fp(f), respectively. Inset graphs represent PDF for each data set and marker sizes in zonal plots illustrate proportional to zonal land area, and
shaded region shows +1 standard deviation. The opaque circle values in the zonal plot correspond to the zonal mean surface soil moisture.
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Figure 5. Map of the aridity index (¢).

recharge. Specifically, if the increased storage in Az is due to reduced
recharge (i.e., drainage out of the bottom of the root zone), a high Fp(f)
result can be interpreted to mean that the drier the environmental
conditions are, the more precipitated water is captured in topsoil layers,
consequently leading to groundwater depletion. Furthermore, if the
increased storage in Az is due to more infiltration (i.e., into the top of
the root zone), a high Fp(f) would likely reduce the occurrence of
drought: as environmental conditions become drier, a greater amount of
precipitated water infiltrates into the top of the root zone. To
understand this result in greater detail, further investigation of Fp(f)
value using various f'value will be considered in future research.

The longitude and latitude mean Fp(1/3) comparison results are shown in
Figure 6, and Table 2 shows the Spearman correlation (p) result between
each data set with respect to longitude and latitude zonal means Fp(1/3).
ERA-based Fp(1/3) showed the lowest agreement (i.e., the lowest p values)
with other satellite-based Fp(1/3) metrics for both longitude and latitude
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Figure 6. Graph showing the comparisons of (top) latitude zonal mean of
Fp(1/3) to (bottom) longitude zonal mean of Fp(1/3). Blue lines indicate
SMAP, orange lines indicate SMOS, yellow lines indicate ASCAT, purple
lines indicate AMSR2, green lines indicate GLDAS, and gray lines indicate
ERA-Interim-based Fp(1/3) calculation.

zonal comparisons. However, two of the reanalysis-based Fp(1/3) metrics
showed high agreement (p value of latitude mean comparison = 0.47 and
p value of longitude mean comparison = 0.55). Overall, the SMAP-based
Fp(1/3) metric shows good agreement with other satellite-based Fp(1/3)
metrics for both longitude and latitude zonal comparisons.

The values of Fp(1/3) from satellite-based calculations have a similar stan-
dard deviation. This is because the satellite-based Fp(1/3) metrics share
the same precipitation sources (i.e., GPM data) as their input variable
for the calculation of Fp(1/3) values and have same Az value (i.e.,
0.05 m). In comparisons of the absolute values of satellite-based Fp(1/3)
and reanalysis-based Fp(1/3), GLDAS-based Fp(1/3) is generally higher
than satellite-based Fp(1/3); but ERA-Interim-based Fp(1/3) is lower than
other satellite-based Fp(1/3) and GLDAS-based Fp(1/3) (average Fp(1/3)
values are 0.245, 0.251, 0.233, 0.251, 0.269, and 0.164 for SMAP-, SMOS-,
ASCAT-, AMSR2, GLDAS-, and ERA-based, respectively).

In the case of reanalysis-based Fp(1/3), two reanalysis data sets were sub-
sampled to have the same data frequency with the satellite-based Fp(1/3),
but they still showed different absolute Fp(1/3) values. We found that the
values of ' A6; from the ERA data were lower than those from the GLDAS
product. This is because the soil moisture from ERA represents a thick-
ness of 0-7 cm of the soil layer, while the GLDAS soil moisture represents
a thickness of 0-10 cm from the soil layer. This point also indicates that
the difference of the parametrization of drainage between the two reana-
lysis products creates different values of Fp(1/3) in the two products.
Additionally, the lesser thickness constant of Az (0.07 m) in the ERA-
based Fp(1/3) calculation also contributes to lower values of Fp(1/3) than
GLDAS Fp(1/3).

In addition, satellite-based and model-based Fp(f) values cannot be used interchangeably for several reasons.
This is because the sampling depth of soil moisture varies, causing different inputs of Az in equation (1). The
sampling depth of microwave-based soil moisture can change with respect to wavelength, soil wetness con-
ditions, soil properties (i.e., bulk density), etc., while model-based Fp(f) values are based on fixed sampling
depths: soil moisture depth from 0 to 10 cm for GLDAS and 0-7 cm for ERA-Interim.

Table 2

Pairwise Spearman Correlation Coefficient Between Each Pair of (Top) Latitude and (Bottom) Longitude Zonal Mean Fp(f)
Metrics From SMAP-, SMOS-, ASCAT-, AMSR2-, GLDAS-, and ERA-Interim-Based Calculations, Respectively

SMAP SMOS ASCAT AMSR2 GLDAS ERA-Interim Average

Latitude

SMAP 1.00 0.79** 0.66** 0.63** 0.29%*%* —0.24** 0.43
SMOS 0.79%* 1.00 0.70** 0.85%* 0.00 —0.55** 0.36
ASCAT 0.66™* 0.7%* 1.00 O —0.24%* —0.56** 0.27
AMSR2 0.63** 0.85** 0.80** 1.00 —0.11%* —0.57*%* 0.32
GLDAS 0.29%* 0.00 —0.24** —0.11* 1.00 0.47%* 0.08
ERA-Interim —0.24** —0.55** —0.56™** —0.57* 0.47* 1.00 —0.29
Longitude

SMAP 1.00 0.69%* 0.67*%* 0.40** 0.68%* 0.12** 0.51
SMOS 0.69%* 1.00 0.54%* 0.68%* 0.38%* —0.03 0.45
ASCAT 0.67%* 0.54%* 1.00 0.49%* 0.56™* 0.38%* 0.53
AMSR2 0.40** 0.68%* 0.49%* 1.00 0.16** —0.02 0.34
GLDAS 0.68%* 0.38%* 0.56™* 0.16™* 1.00 0.55%* 0.47
ERA-Interim 0.12** —0.03 0.38** —0.02 0.55%* 1.00 0.20

**p value<0.01 *p value<0.05
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Figure 7. Heatmap shows the results of (a) SMAP-, (b) SMOS-, (c) ASCAT-, (d) AMSR2-, (e) GLDAS-, and (f) ERA-Interim-based Fp (1/3) metrics with mean pre-
cipitation and mean surface soil moisture. The pixel colors in the heatmap indicate average value of Fp(1/3) within specific ranges of soil moisture and precipitation.
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Figure 7 shows the heatmaps for the mean surface soil moisture, mean precipitation, and average Fp (1/3)
(pixel color). We found higher Fp(1/3) over lower precipitation regions. This is a common trend in all
Fp(1/3) from different input data sets. One possible reason for this high Fp(1/3) in low-precipitation areas
is that the soil matrix holds water too strongly due to low hydraulic conductivity in dry soil (Hillel, 1998;
McColl et al., 2017). By contrast, over higher-precipitation areas, the Fp(1/3) values are much lower than
low-precipitation areas. One possible reason for this low Fp(1/3) is that extreme precipitation over saturated
or wet land surfaces will result in anomalies of runoff flux rather than soil moisture variability because the
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Figure 8. Graphs show the scatterplots of the mean Fp(1/3) from (a) SMAP, (b) SMOS, (c) ASCAT, (d) AMSR2, (e) GLDAS, and (f) ERA-Interim data sets with
respect to different values of the aridity index (¢). Marker sizes in the plots illustrate proportions to number of data sets, and the shaded region shows +1 stan-

dard deviation.

precipitation rate is higher than the infiltration rate (Horton, 1933). These results will be further discussed in
sections 4.3 and 4.4 considering aridity index (¢), w parameter, and vegetation conditions.

4.3. Investigation of Global Spatial Variability of Fp(f)

The scatterplots in Figure 8 show the relationships between the Fp(1/3) and the aridity index, and
Figure 9 shows the relationship between Fp(1/3) and w values acquired from four satellites and two rea-
nalysis data sets. It is interesting to note that even when Fp(1/3) values were calculated from different

data sources, the global tendency of Fp(1/3) is to increase as the aridity index increases, and to decreases
as w decreases.

First of all, a high Fp(f) represents a high fraction of precipitated water remaining in the ground after a pre-
cipitation event. In dry soil, precipitation falling on soil which is held too strongly by the soil matrix due to
low hydraulic conductivity will result in a high Fp(f) value (Hillel, 1998; McColl et al., 2017). Consequently,
dry soil hampers precipitated water on the ground from undergoing evaporation in arid climate regimes.
Higher Fp(1/3) with higher ¢ (i.e., the drier the soil conditions are, the higher the remaining fraction of pre-
cipitated water on the ground is) and higher Fp(1/3) with lower w (i.e., the lower the hydraulic conductivity
is, the less the ET-favorable condition is) support this finding (Figures 8 and 9). Furthermore, the response of
coupled land-atmosphere processes should be carefully discussed here, especially in cases of negative feed-
back where the two sides are working in different directions and may have different strengths. This is espe-
cially important because the return side of the feedback loop (surface to atmosphere) is generally considered
to be weaker than the forward side (atmosphere to surface). If we assume the forward part of the coupling
loop is that low soil hydrologic conductivity causes high Fp(f) and high Fp(f) causes high PET, the return
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deviation.

part of the loop will cause negative feedback. This is due to the fact that high PET causes low Fp(f) because it
encourages greater soil moisture loss due to evaporation. In specific, high Fp(f) values in dry climate regimes,
low hydraulic conductivity increases PET because soil moisture contents reduce ET cooling so that
atmospheric heating from sensible heat flux increases. Consequently, a dry air mass will develop above an
arid surface, creating a high vertical vapor pressure gradient (forward part). This high PET will cause low
Fp(f) (return part); however, this return part is generally regarded as weaker than the forward part.

Based on our current result, we concluded that these different strengths can be represented by the w
parameter. Over the higher ¢ regions, it is found that the return side of the feedback loop (surface to atmo-
sphere) is generally weaker than the forward part (atmosphere to surface). In other words, we found a posi-
tive relationship between Fp(f) and ¢ (Figure 8) and a negative relationship between Fp(f) and w (Figure 9)—
the higher the F,(f) is (low hydraulic conductivity), the lower the w is (less ET-favorable) and the higher the
¢ is (drier). Around 37% = 11% of precipitated water (averaged from satellite- and reanalysis-based data sets)
remains in the topsoil layer after three days of rainfall where the aridity index is greater than 5. It is worth
noting that the variability of Fp(f) increases as ¢ increases (Figure 8). This indicates that over arid climate
conditions, the remaining fraction of precipitated water on the ground can be greatly affected by other land-
scape or climate factors such as soil characteristics, average slope, and mean annual temperature rather than
by ¢. In addition, this high variability of Fp(f) over arid climate regions might represent the different
strengths of the two feedback sides over arid regions. Some arid areas might be seen as having a weaker for-
ward feedback side, which might be caused by the timing of the soil moisture observations from space.
However, this assumption should be further investigated.

Second, over ET-favorable conditions (i.e., high w parameter) with low ¢ areas, Fp(1/3) is low—meaning that
high ET flux prevents precipitated water in the topsoil layer from remaining longer than three days after

KIM AND LAKSHMI

14



'AND SPACESCIENCE

Water Resources Research 10.1029/2018WR023166

rainfall event(s). However, over wet climate regions with extremely high saturation-excess runoff condi-
tions, much of the incoming precipitation runs off and does not make it into the soil at all because the soil
moisture value reaches field capacity quickly after the rainfall event. These areas can be indicated with low
Fp(1/3), low w parameter, and low ¢. In this case, low Fp(1/3) values do not indicate reduced soil memory or
reduced soil residence times rather they simply reflect the fact that a substantial fraction of precipitation
never enters the soil column in the first place. Wetter areas (which tend to be more highly vegetated) tend
to have more saturated excess runoff and thus lower values of Fp(f). In addition, over forested areas, large
amounts of rainfall intercepted by vegetation canopies result in lower A9+, leading to a smaller fraction
of falling precipitation being retained in the surface soil layer. In short, in some areas where high amounts
of saturation-excess runoff and vegetation mass, a lower fraction of precipitated water will remain in the top-
soil because of high drainage, runoff fluxes, and vegetation canopies. Around 21% + 2% of precipitated water
(averaged from satellite- and reanalysis-based data sets) remains in the topsoil layer after three days of rain-
fall where the aridity index is less than 5.

In addition, it is worth noting that further process-level insight can be fully addressed with other
observation data sets such as the leaf area index data from optical sensors for investigating canopy
impact on Fp(f) or ALST anomalies value which can be observed from various sensors such as
microwave and optical sensor (Anderson et al., 2007; Holmes et al., 2009; Price, 1993) for investigating
inundation condition impact on Fp(f) (Parinussa, de Jeu, et al., 2016; Parinussa, Lakshmi, et al., 2016).
These kind of observation-based data sets that would further support the importance of one process
explanation versus another. For example, considering leaf area index data in the calculation of the
Fy(f) value will address how much precipitated water is intercepted on canopies; ignoring the amount
of water captured on canopies will underestimate the Fy(f) value. Furthermore, considering the inunda-
tion conditions in calculation of the Fy(f) will provide a better estimation of the amount of precipitated
water contributed to surface runoff; ignoring the amount of surface runoff will result in underestimation
of the Fy(f) value.

4.4. Impact of Vegetation on Fp(f) Values

Densely vegetated regions tend to be wetter than sparsely vegetated regions, and relatively high precipita-
tion causes dampened soil, which results in increasing hydraulic conductivity; thus, water on the topsoil
layer cannot be retained against gravitational drainage above the field capacity (Hillel, 1998). In these areas,
the low-precipitation fraction could be caused not only by high runoff fluxes but also by plants intercepting
water before it reaches the ground. The strong negative relationship between VOD and Fp(1/3) supports
this statement (Figure 10a). In addition, different types of vegetation have different plant wilting points
(Bréda et al., 1995; Rambal et al., 2003) and isohydricity (Konings & Gentine, 2017), which indicates that
different vegetation types can have different impacts on soil moisture residence times. Koning and
Gentine (2017) found that, in seasonally dry locations, most ecosystems display a more isohydric response
during the dry season (low isohydricity slope). In Figure 10b, we found a weak negative relationship
between the isohydricity slope and Fp(1/3) values. The isohydricity slope is 0 when the species are perfectly
isohydric, and 1 or >1 indicates perfectly anisohydric species. Considering the fact that more isohydric spe-
cies tend to keep leaf water potential relatively steady under water stress, it seems that more isohydric spe-
cies contribute to keep a higher fraction of precipitated water on the ground than anisohydric species. By
contrast, spatially designed farmlands that grow fast crops are more likely to be anisohydric (high isohydri-
city slope) because they keep their stomata relatively open to increase carbon uptake and use more water in
the topsoil layer; thus, relatively low precipitated water remains in the topsoil layer after three days of rain-
fall event in comparison with farmlands growing species. This result also indicates that human conversion
of bare land or forested regions to farmland could sufficiently change the remaining amount of precipita-
tion falling on soil layers, such as the Corn Belt in United States that account for the greatest proportion
of land use. However, there is one important caveat: the observed trend between the isohydric slope and
the Fp(1/3) is somehow weak and an extremely large number of (hidden) covariates could cause the
observed weak correlation. Therefore, the relationship between the Fp(f) and the isohydric slope need to
be further investigated using different f value-based Fp(f) along with detailed land use and land cover
data sets.
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Figure 10. Box plots of Fp(f) at different (a) vegetation optical depth and (b) isohydricity slope ranges for SMAP (blue
boxes), SMOS (orange boxes), ASCAT (yellow boxes), AMSR2 (purple boxes), GLDAS (green boxes), and ERA-Interim
(gray boxes) based calculations, respectively.

5. Conclusion

The purpose of this study is to analyze the stored precipitation fraction (Fp(f)) considering the degree of vege-
tation, aridity index, and w parameters using various global-scale satellites and reanalysis products. The Fp(f)
metrics from the different data sources were then compared in order to investigate the sensitivity of the Fp(f)
to different input products. By studying the spatial variability of Fp(f) metrics with respect to different aridity
conditions, we were able to investigate new perspectives into process controls on the spatial variability of
Fp(f) over arid and wet regions. Furthermore, we subsampled reanalysis products and estimated the Fp(1/
3) from those reanalysis products. The reanalysis-based Fp(1/3) results were then compared with satellite-
based Fp(1/3) (i.e., same data sampling frequency). The major findings of the present study are summarized
below:

1. Even though Fp(1/3) values were calculated from different soil moisture and precipitation sources, they
shared an overall spatial trend: the drier the environment condition is, the more precipitated water
remained in the topsoil layer.

2. A positive relation between the Fp(f) and aridity index and a negative relation between the Fp(f) and w
parameter were found. Globally, about 37% + 11% of precipitated water (averaged from satellite- and
reanalysis-based data sets) remains in the topsoil layer after three days of rainfall where the aridity index
is greater than 5 because the soil matrix holds precipitated water on the topsoil layer too strongly due to
low hydraulic conductivity. In wet conditions, around 21% + 2% of precipitated water remains in the top-
soil layer after three days of rainfall event where the aridity index is lower than 5 because much of the
incoming precipitation runs off and does not make it into the topsoil layer.

3. Negative relations between Fp(1/3) with VOD and isohydricity slope were found. High Fp(1/3) with high
o parameter (high ET-favorable condition) and low ¢ support the fact that high amounts of rainfall cap-
tured by vegetation canopies and high evapotranspiration flux will result in a low fraction of falling
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precipitation being retained in the surface soil layer. In addition, the weak negative relationship between
the isohydricity slope and Fp(1/3) value led us to conclude that more isohydric species seem to contribute
to keeping a higher fraction of precipitated water on the ground than do aniohydric species, because iso-
hydric species tend to keep leaf water potential relatively steady under water stress conditions.

In future studies, calculation of Fp(f) metrics from different soil moisture layers and consideration of
observation-based high sampling frequency soil moisture data (Kim & Lakshmi, 2018) and high spatial
resolution of soil moisture products (Das et al., 2017) can further help elucidate the Fp(f) metric and many
geophysical applications. In addition, the investigation of longer data records of the stored precipitation
fraction metric from satellite (Dorigo et al., 2017) and reanalysis data sets would also allow investigation
of the impact of climate change on the water cycle.
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