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A B S T R A C T

Global-scale surface soil moisture (SSM) products retrieved from active and passive microwave remote sensing
provide an effective method for monitoring near-real-time SSM content with nearly daily temporal resolution. In
the present study, we first inter-compared global-scale error patterns and combined the Soil Moisture Active
Passive (SMAP), Advanced Scatterometer (ASCAT), and Advanced Microwave Scanning Radiometer 2 (AMSR2)
SSM products using a triple collocation (TC) analysis and the maximized Pearson correlation coefficient (R)
method from April 2015 to December 2016. The Global Land Data Assimilation System (GLDAS) and global in
situ observations were utilized to investigate and to compare the quality of satellite-based SSM products.

The average R-values of SMAP, ASCAT, and AMSR2 were 0.74, 0.64, and 0.65 when they compared with in
situ networks, respectively. The ubRMSD values were (0.0411, 0.0625, and 0.0708) m3 m−3; and the bias values
were (−0.0460, 0.0010, and 0.0418) m3 m−3 for SMAP, ASCAT, and AMSR2, respectively. The highest average
R-values from SMAP against the in situ results are very encouraging; only SMAP showed higher R-values than
GLDAS in several in situ networks with low ubRMSD (0.0438 m3 m−3). Overall, SMAP showed a dry bias
(−0.0460 m3 m−3) and AMSR2 had a wet bias (0.0418 m3 m−3); while ASCAT showed the least bias
(0.0010 m3 m−3) among all the products.

Each product was evaluated using TC metrics with respect to the different ranges of vegetation optical depth
(VOD). Under vegetation scarce conditions (VOD < 0.10), such as desert and semi-desert regions, all products
have difficulty obtaining SSM information. In regions with moderately vegetated areas (0.10 < VOD < 0.40),
SMAP showed the highest Signal-to-Noise Ratio. Over highly vegetated regions (VOD > 0.40) ASCAT showed
comparatively better performance than did the other products.

Using the maximized R method, SMAP, ASCAT, and AMSR2 products were combined one by one using the
GLDAS dataset for reference SSM values. When the satellite products were combined, R-values of the combined
products were improved or degraded depending on the VOD ranges produced, when compared with the results
from the original products alone.

The results of this study provide an overview of SMAP, ASCAT, and AMSR2 reliability and the performance of
their combined products on a global scale. This study is the first to show the advantages of the recently available
SMAP dataset for effective merging of different satellite products and of their application to various hydro-
meteorological problems.

1. Introduction

Several methods for reproducing near-surface soil moisture (SSM)

estimates from satellite-based microwave instruments have been pro-
posed (Wagner et al., 1999; Njoku et al., 2003; Entekhabi et al., 2010;
Jackson et al., 2010; Kerr et al., 2010). These investigations are crucial
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for understanding the hydrological cycle because SSM plays a key role
in the partitioning of energy and water fluxes among the hydrosphere,
biosphere, and atmosphere. In particular, SSM at global and regional
scales is required in operational applications such as numerical weather
prediction (NWP) at different time scale, climate and agricultural
modeling, water resource and irrigation management, dust outbreak
prediction, and many other surface processes (Koster et al., 2009;
Brocca et al., 2010; Bolten et al., 2010; Kim and Choi, 2015; Kim et al.,
2017; Brocca et al., 2017). Owing to its important role in the climate
system, SSM was listed as a key variable among the “Essential Climate
Variables” (ECVs) in 2010 (GCOS, 2006).

Several satellite missions including the Soil Moisture and Ocean
Salinity (SMOS) and Soil Moisture Active Passive (SMAP) have been
dedicated to measuring global SSM through space-borne remote sensing
(Kerr et al., 2001; Entekhabi et al., 2010). Specifically, SMAP was re-
cently launched by the National Aeronautics and Space Administration
(NASA) in January 2015 to monitor SSM and to detect the frozen or
thawed state of soils. Similarly, many other promising sensors (active
and passive) capable of acquiring global SSM have been launched.
These include the Advanced Scatterometer (ASCAT) onboard MetOp-A
and B, the Advanced Microwave Scanning Radiometer 2 (AMSR2) on-
board Global Change Observations Mission 1-Water (GCOM-W1), and
the Microwave Radiation Imager onboard Feng Yun (Albergel et al.,
2009; Dorigo et al., 2010; Wagner et al., 2013; Parinussa et al., 2015;
Cui et al., 2016). Although the SSM retrieved from these sensors has a
coarse spatial resolution (20–50 km), they have a short repeat time
(1–3 days) that is suitable for many hydro-meteorological applications
(Walker and Houser, 2004). In addition to improved retrieval of sa-
tellite-based SSM-data from space, new land surface models and ground
measurements are providing useful SSM information about near-surface
to deeper layers. Ground-based SSM measurements reflect the true
value of SSM at point scale (Brocca et al., 2007; Famiglietti et al., 1999;
Ngunyen et al., 2017). Moreover, many previous studies have shown
that point-based ground measurements can reflect temporal SSM dy-
namics of the field mean SSM value (Vachaud et al., 1985; Wagner
et al., 2008; Brocca et al., 2009); therefore, such ground measurements
are essential for validation and evaluation of both satellite-based and
land surface model SSM products. In situ datasets have limitations in
terms of vertical and spatial representation and spatial extent, espe-
cially for global-scale data analysis. For this reason, modeled SSM
products such as those from the Modern-Era Retrospective Analysis for
Research and Applications-Land (MERRA-Land) and Global Land Data
Assimilation System (GLDAS), which are based on merged satellite and
gauge-based datasets, are sometimes used for validation and calibration
studies (Brocca et al., 2011; Chen et al., 2013; Al-Yaari et al., 2014a,
2014b). Not only satellite-based SSM data but also land surface models
are tools that provide sufficiently reasonable guidance of SSM and
profile SM information worldwide over regions where in situ observa-
tions are sparse (Lakshmi, 2004; Albergel et al., 2012).

Understanding the spatio-temporal error characteristics of different
satellite SSM products is of great importance for operational applica-
tions. In many previous studies, the consistency of satellite-based SSM
products have been investigated using reference SSM values, including
data from the Advanced Microwave Scanning Radiometer for EOS
(AMSR-E), SMOS, ASCAT, and AMSR2. Such studies have shown that
each product has different error characteristics under different surface
and environmental conditions (Dorigo et al., 2010; Gruhier et al., 2010;
Kim et al., 2015a; Konings et al., 2011; Leroux et al., 2014; Wagner
et al., 2014; Griesfeller et al., 2016; Burgin et al., 2017; Cho et al.,
2017). Because each satellite-based SSM product has shown different
performance depending upon land cover conditions, sensor specifica-
tions, and SSM retrieval algorithms, the merging of these different da-
tasets is regarded as a promising approach by which to establish a level
of meta-performance superior to what is possible using the individual
products (Liu et al., 2011; Liu et al., 2012; Kim et al., 2015b).

Combining different satellite-based SSM products provides a

mechanism for overcoming the drawbacks of an individual product
(Houser et al., 1998; Liu et al., 2012; Wagner et al., 2012; Dorigo et al.,
2015). To generate a combined SSM product, both passive and active
microwave SSM datasets have been used. Liu et al. (2012) combined
four passive and two active microwave products as part of the European
Space Agency (ESA) Program on Global Monitoring of ECV, which was
initiated in 2010 and is known as the Climate Change Initiative (CCI;
http://www.esa-soilmoisture-cci.org). Starting from 1 November 1978,
the ECV CCI products have provided combined SSM products for long
observation periods and preserved the relative dynamics of the original
satellite-derived products (Dorigo et al., 2017). Furthermore, Kim et al.
(2015b) introduced a method of combining two different parent data-
sets by maximizing the temporal correlation with a reference dataset. If
the reference value (e.g., a modeled SSM dataset) is assumed to be the
highest-quality SSM dataset, the maximized R method is capable of
improving the temporal correlation coefficient values between the
combined and reference datasets when two parent products are com-
bined. Because each product performs differently under different en-
vironmental conditions, complementary aspects can be distinctly ob-
served. However, the reference values do not always represent the
highest-quality dataset, which can lead to deterioration of the parent
products. Nonetheless, in many cases, the combined dataset shows
generally superior results compared with individual datasets by
showing higher values of temporal correlation with ground-based
measurements.

In the present study, we first inter-compared and combined a re-
cently available SMAP dataset with specific versions of ASCAT and
AMSR2 SSM products using statistical metrics including triple colloca-
tion analysis and presented the results through the Taylor diagram. As
previously mentioned, SSM is retrieved using many different algorithms
that can show better or worse performance over some areas even
though the observational system is identical. Wagner et al. (2014)
clearly showed that different performance rankings of SSM datasets
(and subsequent conclusions) could be obtained by specific selection of
processing and interpretation of the datasets. Considering this point,
the present study compares algorithms and metrics to determine whe-
ther a particular satellite-based SSM product enables improved quality
and performance when combined with other datasets.

The three main objectives of this study were as follows. First, we
aimed to assess the global performance of individual SSM products
(from SMAP, ASCAT, and ASMR2) by comparison with ground-based
and model SM datasets produced from April 2015 to December 2016.

Second, we aimed to investigate global-scale error patterns of
SMAP, ASCAT, and AMSR2 using triple collocation analysis; with per-
formance assessments to consider different land cover classifications
and vegetation fractions.

Third, we aimed to combine SMAP with other satellite-based SSM
products and evaluate the results to investigate practical applications of
the newly available SMAP dataset. Regarding the combined SSM pro-
duct, the SMAP SSM was considered a candidate product for combi-
nation with others.

This research provides novel insight into the use of the recently
available SMAP SSM dataset in various practical applications including
satellite-based SSM data merging, assimilation in NWP, and hydro-
logical modeling.

2. Materials and methods

2.1. Remotely sensed surface soil moisture

SMAP, ASCAT, and AMSR2 were evaluated against GLDAS and in
situ SSM datasets, which were assumed to be reference SSM values.
Because the SMAP dataset was made available in April 2015, the period
of analysis was April 2015 to December 2016. All three satellite-based
SSM datasets were projected to the WGS84 geographic grid and re-
sampled using the nearest neighbor distance algorithm to establish a
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uniform georeferenced 0.25° grid, which is the same as that used in the
GLDAS datasets (Rüdiger et al., 2009; Al-Yaari et al., 2014b). In addi-
tion, the GLDAS datasets were reconstructed from UTC time-based to
local time-based in order to match the SMAP, ASCAT, and AMSR2 local
overpass times. This reconstruction was achieved by considering the
navigational time zone based on longitude and by neglecting local
statutory deviations (Fig. S1). Similarly, data from the in situ datasets
were extracted at a time closest to the local overpass time of each sa-
tellite product. Because the International Soil Moisture Network (ISMN)
provides hourly data, we set a one-hour threshold for the maximum
time difference between the in situ and satellite overpass time (local
time). For instance, we used the in situ datasets of 06:00–07:00 A.M. for
the half orbit SMAP, 9:00–10:00 P.M. for the descending path of ASC-
AT, and 01:00–02:00 A.M. for the ascending path of AMSR2. In order to
calculate sound results, the in situ stations for which the corresponding
pixels had> 100 data points in time were selected for all satellites and
GLDAS products.

2.1.1. SMAP soil moisture retrievals
Successfully launched in January 2015, the SMAP mission is the first

Earth observation satellite developed by NASA in response to the
National Research Council's Earth Science Decadal Survey (Entekhabi
et al., 2010; Colliander et al., 2017). This mission was designed to
enhance scientific understanding of the interaction between the Earth's
surface and atmosphere to predict natural disasters and improve cli-
mate forecasting. The main goal of the SMAP mission is to obtain high-
accuracy SSM information. The accuracy requirements of SMAP mission
specify that SSM should be retrieved with ubRMSE of 0.04 m3 m−3

accuracy in low or moderately vegetated areas in order to use this data
for effective monitoring and prediction of natural hazards such as
droughts, floods, and dust outbreaks. SMAP carries an L-band radio-
meter (1.41 GHz) and rotating reflector radar (1.26 GHz non-imaging
SAR), which was designed to provide a conical scanning-antenna beam.
SMAP has a near-polar sun synchronous orbit and overpasses the
Equator at approximately 06:00 and 18:00 local time (LT) in des-
cending and ascending orbits, respectively. In addition, SMAP was ex-
pected to provide different SSM resolutions, at 3, 9, and 36 km. How-
ever, only the 36 km and enhanced L3 radiometer 9 km resolution
datasets are currently available because the radar unit failed to transmit
after 7 July 2015. For this reason, only a few months of the active/
passive combined SSM datasets are available. The data from the des-
cending half-orbit has been used as input for SSM retrievals because of
the equilibrium assumption of early morning thermal conditions for
hydro-meteorological variables (e.g., air, vegetation, and near-surface
soil). In this study, we used the 36 km half-orbit descending SMAP
Level-3 radiometer-based SSM product because it is expected that the
descending overpass time of SMAP (06:00 LT) is closest to thermal
equilibrium and uniformity among the SSM conditions available at this
time (Hornbuckle and England, 2005; Entekhabi et al., 2010; Das and
Dunbar, 2015). It is this product (SMAP Level-3) that is hereafter re-
ferred to as SMAP. All radiometer data products from SMAP were ob-
tained from the National Snow and Ice Data Center (NSIDC DAAC,
http://nsidc.org/data/smap/). The SMAP dataset was masked where
soil temperature was below 273.15 K from the GLDAS 0–10 cm layer,
for SSM lower than 0.02 m3 m−3 and higher than 0.50 m3 m−3, and
when the flag for the freeze/thaw fraction indicated an unfrozen soil
and when the retrieval quality flag was set as ‘recommended’. The
validation grid processing corresponds to the SMAP data version
R14010. Please refer to O'Neill et al. (2015) for detailed description of
the algorithm theoretical basis document for the SMAP.

2.1.2. ASCAT soil moisture retrievals
The ASCAT sensors onboard the Meteorological Operational A and B

(MetOp-A and MetOp-B) satellites are active microwave remote-sensing
instruments operated by the European organization for the exploitation
of METeorological SATellites (EUMETSAT). METOP-A was launched in

October 2006. ASCAT acquires radar backscatter measurements at a
frequency of 5.3 GHz (C-band), has a spatial resolution of 25 km with a
1–3 day revisit time (Scipal et al., 2008a; Naeimi et al., 2012; Wagner
et al., 2013). The ASCAT overpasses at 09:30 LT in descending orbit,
and at 21:30 LT in ascending orbit. ASCAT SSM retrievals are dis-
tributed by the EUMETSAT'S Satellite Application Facility as Support to
Operational Hydrology and Water Management (H-SAF). The change-
detection method was introduced by Wagner et al. (1999) and im-
proved by Naeimi et al. (2009). Specifically, the SSM content (ms), or
the so-called degree of saturation, can be calculated from the basic
ASCAT measurement, which is the backscattering coefficient (σ°)
measured at a reference angle of 40° and based on the method of
Wagner et al. (1999). For details about the change detection algorithm,
please refer to Wagner et al. (2013).

The porosity values were estimated by applying the equations of
Saxton and Rawls (2006). The texture characteristics were obtained
from the Harmonized World Soil Database (FAO/IIASA/ISRIC/ISS-
CAS/JRC, 2009). In this study, we focused on ASCAT SSM products for
a 25 km-swath grid generated from the EUMETSAT Data Service
Centre, which are available for download through the EUMETSAT
website (https://rs.geo.tuwien.ac.at/products/). The ASCAT dataset
was masked out to remove grid cells for wetland fractions above 15%,
topographic complexity above 20%, SSM error above 10%, and soil
temperature below the freezing point (Draper et al., 2012; Parrens
et al., 2012; Paulik et al., 2014). It is worth noting that all three pro-
ducts have different flag information for masking abnormal SSM data-
sets; thus, if new flag information is developed in future datasets, it
would help provide masks for retrieval of higher quality SSM datasets.

In addition, different ASCAT SSM products, such as the time series
products distributed by H-SAF (http://www.geo.tuwien.ac.at), may
show better quality than the NRT data found in the EUMETSAT archive.
However, owing to the availability of the dataset, we used EUMETSAT
NRT products in this study. We considered only the descending path of
the ASCAT SSM product, hereafter referred to as ASCAT, because it
showed slightly better statistical metrics when compared with in situ
observations (Table S1).

2.1.3. AMSR2 soil moisture retrievals
The AMSR2 sensor onboard the GCOM-W1 platform was launched

in May 2012 (Kachi et al., 2013). This satellite mission is the successor
of Aqua AMSR-E, which ceased operation in October 2011. AMSR2 is a
passive microwave remote sensing instrument developed by the Japan
Aerospace Exploration Agency (JAXA) with the cooperation of NASA. It
utilizes microwave frequency bands: C1 (6.9 GHz), C2 (7.3 GHz), and X
(10.6 GHz), for SSM measurements and provides a 1450 km swath-
width. It has three different ground resolutions that depend on fre-
quency channels (C1-band: 24 × 42 km, C2-band: 34 × 58 km; X-
band: 35 × 62 km) with a revisit time of one to two days (Maeda and
Taniguchi, 2013). The AMSR2 crosses the equator at 01:30 LT and
13:30 LT in descending and ascending orbits, respectively. AMSR2-
based SSM products can be derived from two widely used algorithms:
the JAXA and Land Parameter Retrieval Model (LPRM) (Maeda and
Taniguchi, 2013; Kim et al., 2015a; Parinussa et al., 2016; van der
Schalie et al., 2017). Both algorithms utilize a simple radiative transfer
model (Mo et al., 1982) based on microwave emissions from the land
surface, which were measured in terms of satellite brightness tem-
perature (Tb). The JAXA algorithm produces SSM products in the X-
band only, whereas the LPRM products are available in both C- and X-
band microwave frequencies. Moreover, the LPRM algorithm retrieves
the vegetation optical depth (VOD) product along with the SSM product
from AMSR2 Tb measurements using the Microwave Polarization Dif-
ference Index (Owe et al., 2001; Meesters et al., 2005). VOD is a
measure of vegetation water content and aboveground vegetation
structure, and has been used for estimates of aboveground vegetation
(Konings and Gentine, 2017). In this study, we used the AMSR2 des-
cending overpass VOD to evaluate the different satellite SSM products

H. Kim et al. Remote Sensing of Environment 204 (2018) 260–275

262

http://nsidc.org/data/smap
https://rs.geo.tuwien.ac.at/products
http://www.geo.tuwien.ac.at


in terms of vegetation fraction.
Furthermore, for this study we used the most recently improved

LPRM AMSR2 dataset (descending path), hereafter referred to as
AMSR2. This dataset has shown significantly improved ability, relative
to existing LPRM algorithms, for capturing the temporal variability of
SSM when compared with in situ observations (Parinussa et al., 2016;
van der Schalie et al., 2017). Moreover, in comparison with other sa-
tellite-based SSM datasets, AMSR2 can provide SSM and VOD retrieval
at three different frequencies. Therefore, it can minimize the effects of
contamination from radio frequency interference (RFI), which means
that the C1-, C2-, and X-bands can be used for selective SSM and VOD
retrieval (de Nijs et al., 2015). The C-band frequency is usually ex-
pected to have higher-quality SSM information than with the X-band
because of the deeper penetration provided by lower frequencies.
Therefore, we used the newly developed RFI detection method, the
standard error of estimate (SE) proposed by de Nijs et al. (2015), to set
the lower frequency-based SSM product as a priority product for
AMSR2 (Fig. S2). We note that care in the use of LPRM AMSR2 products
distributed by JAXA is encouraged because Cho et al. (2017) found that
Version 1 LPRM AMSR2 C1- and C2-band retrieved SSM showed unu-
sual temporal patterns when compared with the modeled and X-band
SSM products. The AMSR2 dataset over densely vegetated regions was
screened using the VOD value and setting an upper threshold of 0.6,
which was retrieved along with the SSM values (Meesters et al., 2005;
Owe et al., 2008) (Fig. 1a). Similar to the SMAP and ASCAT dataset
preprocessing, when the soil temperature was below 273.15 K (freezing
point of water), the AMSR2 dataset was masked out.

2.2. GLDAS soil moisture product

Along with the satellite-based SSM datasets, Global Land Data
Assimilation System-1 (GLDAS-1) Noah, which became available in
2000, also provides numerous atmospheric and land surface variables
with a temporal resolution of 3 h and a spatial resolution of 0.25°. The

model is constrained to using heterogeneous forcing datasets including
National Oceanic and Atmospheric Administration (NOAA)/GDAS at-
mospheric analysis, the spatially and temporally disaggregated NOAA
Climate Prediction Center Merged Analysis of Precipitation field, and
observation-based radiation fields derived from the Air Force Weather
Agency's Agricultural Meteorological modeling system (Rodell et al.,
2004). GLDAS has been widely used as a reference dataset for merging
active and passive products (Liu et al., 2011; Kim et al., 2015b). In this
study, the SSM of the top 10 cm layer from GLDAS-1-Noah, hereafter
referred to as GLDAS, was utilized as the reference value of SSM when
combining satellite-based SSM products based on the maximized R
method. In addition, it is worth noting that some depth mismatch be-
tween the satellite-based SSM (top few cm) and the GLDAS SSM (10 cm)
is certainly expected; however, GLDAS-1 Noah SSM represents 0–10 cm
depth, which implies that the GLDAS SM contains information about
depths shallower than 10 cm as well. Moreover, in many previous
studies, the top 10 cm SM-dataset from land surface models was utilized
to validate and improve various satellite-based SSM retrievals (Dorigo
et al., 2010; Liu et al., 2012; Wagner et al., 2012).

GLDAS SSM was validated with in situ SSM datasets from the ISMN
to verify its reliability, as discussed in Section 3.1.

2.3. International Soil Moisture Network (ISMN)

To evaluate the individual remotely sensed SSM products, we used
in situ observations from the ISMN. ISMN is a web-based data center
that collects and organizes in situ soil moisture measurements from
different operational networks and validation campaigns, and freely
shares the data with users through a web interface (https://ismn.geo.
tuwien.ac.at/; accessed on 4. Oct. 2017). The soil moisture data pro-
vided by ISMN are crucial for validating different satellite-based SSM
retrievals and land surface models and for studying the climate system
(Dorigo et al., 2011; Dorigo et al., 2013; Ochsner et al., 2013). The
ISMN soil moisture has been widely used in many validation studies.

Fig. 1. (a) Global map of average vegetation optical depth from the AMSR2 descending path for January 2015 to December 2016. (b) Global land cover classification from the BATS
model. (c) Pie charts indicating land cover classification from the BATS model based on six VOD ranges.

H. Kim et al. Remote Sensing of Environment 204 (2018) 260–275

263

https://ismn.geo.tuwien.ac.at
https://ismn.geo.tuwien.ac.at


Currently, the ISMN holds numerous soil moisture datasets provided
by> 2000 measurement stations and operated by> 55 different net-
works (Dorigo et al., 2015). In this study, however, we chose only
stations measuring SM at a depth of 10 cm or less with data covering
the study period (April 2015 to December 2016). Moreover, to obtain
robust statistical results, we masked the stations for which the corre-
sponding pixel had< 100 data points in time (for GLDAS and the three
satellite products). Furthermore, if more than one station was situated
in a grid pixel, we took an average of all station values. After this
preprocessing step, the data at 213 sites in eight different monitoring
networks remained, most of which are located in the United States and
Europe (Fig. 2). All datasets were quality controlled, and were cross-
screened in order to retain only overpass times and pixels for which all
satellite-based datasets were attainable. A brief description of the ISMN

used is summarized in Table 1. A detailed description of the ISMN used
is provided in the Supplementary Data file.

2.4. The Biosphere-Atmosphere Transfer Model

The Biosphere-Atmosphere Transfer Model (BATS) is a simple
boundary layer scheme first introduced by Dickinson (1986). Sub-
sequent improvements in the model have been well documented by
Dickinson (1984) and Dickinson et al. (1993). The BATS scheme con-
siders three soil layers and one vegetation layer for predicting seven
variables: canopy temperature, surface soil temperature, subsurface soil
temperature, surface soil water, root zone soil water, total soil water,
and canopy water content. The surface cover and soil types are based on
Wilson and Henderson-Sellers (1985). This scheme was designed for

Fig. 2. a) Locations of the ISMN in-situ SM stations used for validation in this study. There are 5 out of 20 for REMEDHUS, 17 out of 19 for RSMN, 76 out of 1018 for SCAN, 5 out of 68 for
SMOSMANIA, 38 out of 1393 for SNOTEL, 3 out of 291 for SOILSCAPE, 49 out of 486 for USCRN, and 20 out of 73 for COSMOS stations. The majority of stations are concentrated in (b)
the USA and (c) Europe. The number of stations in the maps represents the stations that passed the quality control and cross-screening processes.

Table 1
ISMN summary.

Network name Country No. of station used Depth used (cm) Type of sensor References

REMEDHUS Spain 5 0–5 Stevens HydraProbe Sancheze et al. (2012)
RSMN Romania 17 0–5 5TM http://assimo.meteoromania.ro/
SCAN United States 76 0–10 Hydraprobe analog (5.0 V) http://www.wcc.nrcs.usda.gov/scan

Hydraporbe Digital Sdi-12 (2.5 V)
Hydraprobe Analog (2.5 V) n.s.
Hydraprobe Digital Sdi-12 Thermistor (linear)

SMOSMANIA France 5 0–10 ThetaProbe ML2X Albergel et al. (2008)
ThetaProbe ML3

SNOTEL US 38 0–10 Hydraprobe analog (5.0 V) http://www.wcc.nrcs.usda.gov/snow
Hydraprobe Analog (2.5 V)
Hydraprobe Digital Sdi-12 (2.5 V)

SOILSCAPE US 3 5 EC5 Moghaddam et al. (2016)
USCRN US 49 0–10 Stevens Hydraprobe II Sdi-12 Bell et al. (2013)
COSMOS US 20 Variable over time and space Cosmic-ray Probe Zreda et al. (2012)
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incorporation into the National Center for Atmospheric Research
Community Climate Model; however, its many features have also been
used in other land surface models (Liang et al., 1994). In this study,
land cover classifications from the BATS model were used to evaluate
the performance of the individual and combined SSM products for
different land cover types.

2.5. Data preparation

Satellite-based SSM retrieval from space provides observations of
the thin top-layer SSM; however, in situ soil moisture sensors are in-
stalled at a certain depth below the surface and can sense the soil
moisture profile. Therefore, a depth discrepancy occurs between sa-
tellite and in situ sensors that has been noted and widely discussed in
previous studies (Al-Yaari et al., 2014a; Dorigo et al., 2015; Shellito
et al., 2016; Zohaib et al., 2017). Simple techniques like the exponential
filter make it possible to overcome the depth discrepancy between
ground measurements and satellite SSM products by estimating root-
zone soil moisture, as proposed by Wagner et al. (1999). In their study,
this semi-empirical approach generally improved the R-values with
respect to in situ measurements. We calculated the satellite profile layer
soil moisture using an exponential filter developed by Wagner et al.
(1999) and given by Albergel et al. (2008) in its recursive form as
follows:

= + −− −SWI SWI K SWI(ms(t ) ),mn m n n n m n( 1) ( 1) (1)

where SWIm(n-1) is the profile soil moisture estimate at tn-1, and ms(tn)
is the SSM estimate at tn. The gain K at a time tn is given by.

=

+

−

−

−
− −( )

K K

K e
,n

n

n

1

1
tn tn

T
1

(2)

where T represents the characteristic time length in days, which is
considered a proxy for all processes that affect the temporal dynamics
of subsurface soil moisture such as layer depth, soil hydraulic proper-
ties, evapotranspiration, runoff, and vertical heterogeneity of the soil
properties (Albergel et al., 2008). In previous studies, an optimum T
(Topt) value approach was proposed based on the Nash-Sutcliffe score,
to match the profile soil moisture at each in situ station. The exponential
filter has been detailed in various studies (Wagner et al., 1999; Albergel
et al., 2008; Ford et al., 2014). In the present study, we also used Topt to
match the depth of satellite and in situ soil moisture at each station. SWI
was only considered when satellite-based SSM datasets were compared
with in situ observations.

2.6. Statistic metrics used for the comparison and combination methodology

2.6.1. Comparison metrics and triple collocation error estimator
We considered three conventional statistical indicators to evaluate

each remotely sensed SSM (SSMSAT): the Pearson correlation coefficient
(R), bias, and unbiased root-mean-square deviation (ubRMSD). These
metrics were considered for validation of three satellite and model
datasets against in situ observations, and for validating the combination
of three satellite products. We assumed that in situ datasets have the
highest quality SSM values in order to calculate the unbiased RMSD and
bias values. In addition, we set the GLDAS datasets as the highest-
quality reference SSM values for combining two parent products, which
is an inevitable assumption for combining processes via the maximized
R method. All conventional statistical metrics were applied only when
the number of data points used for calculation was larger than 100. The
ubRMSD metric was considered to investigate each product's RMSD
value after removing a possible bias from ancillary information (e.g.,
porosity) (Albergel et al., 2012; Al-Yaari et al., 2014a, 2014b). Only the
R-values at p < 0.05 were considered in the comparison analysis.

In order to provide global-scale analysis of the satellite-based SSM
products, we considered triple collocation (TC) statistics. TC analysis

enables evaluation of global-scale satellite-based SSM products without
having additional reference datasets as conventional metrics. Through
TC analysis, we could calculate the random error variances of three
collocated datasets. Most recently, Gruber et al. (2016) suggested the
use of decibel units of signal-to-noise ratio (SNR[dB], Eqs. (3)–(4),
which is physically intuitive and has low sensitivity to estimation un-
certainties. In addition, on the basis of the SNR value, the fractional
mean squared error (fMSE, Eq. (5)) and linear correlation coefficient
(Ri

2, Eq. (6)) of the individual datasets could be calculated. Details of
the TC analysis have been presented in previous research (Scipal et al.,
2008b; Draper et al., 2013; Su et al., 2014a, 2014b; Gruber et al., 2016).

TC assumes independent errors; therefore, we selected SSM pro-
ducts with derivations as different as possible because similarly derived
datasets might have partially correlated errors. This might happen for
AMSR2 and SMAP, for example, because they are both radiometers. For
these reasons, we repeated the TC calculations twice: once with a triplet
including SMAP, ASCAT, and GLDAS and once with a triplet including
AMSR2, ASCAT, and GLDAS. Then we used the ASCAT TC statistics
from the SMAP triplet because ASCAT is more dissimilar in frequency to
SMAP than AMSR2. However, the error estimates for each product were
consistent when using the two different triplets, we expect that this
process did not impact the final results discussed later.

Aside from the value of error variance, the SNR metric enables
objective comparison of the error metric among various satellite SSM
products (Gruber et al., 2016) because the individual SSMSAT has a
subjective scaling of the range of SSM variation.

=
⋅

⋅
SNR

cov(SSM , SSM ) cov(SSM , SSM )
cov(SSM , SSM ) var(ε )SAT

SAT SAT SAT GLDAS

SAT GLDAS SAT
1

1 2 1

2 1 (3)

where the subscript 1 and 2 denotes two independent satellite dataset,
cov is the covariance of the two independent satellites dataset or a
satellite and GLDAS dataset, and var. is variance of the SAT1 error.

By taking SNR with the decadic logarithm, the SNR was distributed
symmetrically around zero, which gave easier and clearer insight into
the value of SNR interpretation.

=dBSNR[ ] 10 log(SNR), (4)

Every positive or negative 3 dB interval of SNR[dB] indicates an
additional doubling or halving of the ratio of two different SNR[dB]
values.

The fMSE for dataset i can be calculated using Eq. (5) and is in-
versely related to the SNR value (Draper et al., 2013).

=
+

fMSE 1
1 SNR

,i
i (5)

The scale of fMSE is between ‘0’ and ‘1’. A lower/higher fMSE in-
dicates a clearer/noisier signal of the SSM value. Thus, when the fMSE
is ‘0’, its SSM observation does not include noise. Here, an fMSE of ‘1’
means there is only noise in its SSM observation. If the fMSE value is
lower than 0.5, its SSM observation signal is stronger than its noise.

The Ri
2 value can be calculated from following equation:

=
+

R 1
1

,i
2

1
SNRi (6)

The Ri
2 is different with conventional R-values in terms of its in-

dependency (McColl et al., 2014). Ri
2 does not require a reference da-

taset as a conventional R value, which can degrade the value of R owing
to random errors in the reference dataset. Details of the TC statistics
described above are presented in Gruber et al. (2016). In addition,
because Ri

2 does not provide a more distinctive perspective than SNR
[dB], we focused on the SNR and fMSE results.

2.6.2. Taylor diagrams
A Taylor diagram can represent multiple statistics for comparison of

different SSMSAT against the SSMREF (e.g., in situ) data on two-
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dimensional plots. Normalized standard deviation (SDV) indicates the
ratio between the SSMSAT and in situ measurement standard deviations.
In the Taylor diagram, the SDV values are shown as radial distance, R-
values (Eq. (5)) with in situ data are shown as an angle in the polar plot,
and the in situ observation is shown as a point on the x-axis at R = 1
and SDV = 1. The centered RMSD (E) between SSMSAT and the in situ
dataset, which was normalized using the in situ standard deviations, is
the distance to this point. E quantifies errors in the pattern variations,
whereas SDV provides the relative amplitude and does not include in-
formation on bias (Albergel et al., 2012). SDV and E are computed using
Eqs. (7) and (8), respectively.

=

−

σ
σ

SDV ,SM

SMin situ

SAT

(7)

=
−

−
σ

E (RMSD Bias ) ,2
2 2

2
SMin situ (8)

The E value can be calculated from SDV and R (Eq. (9)) because
they are complementary but not independent (Taylor, 2001).

= + − ⋅ ⋅E SDV 1 2 SDV R,2 2 (9)

2.6.3. Maximized R method for combining soil moisture datasets
One of the main goals of this research was to determine whether the

SMAP product contributes to better performance of the combined da-
tasets when it is considered as a candidate for combining with multiple
SSM products. Combinations of SMAP, ASCAT, and AMSR2 were con-
sidered for the final blended product. SMAP and ASCAT, hereafter re-
ferred to as SMAP + ASCAT; AMSR2 and SMAP, hereafter referred to as
AMSR2 + SMAP; and ASCAT and AMSR2, hereafter referred to as
ASCAT + AMSR2, were combined using the maximized R method. As
mentioned in Section 1, the maximized R method is capable of im-
proving the temporal R-values between combined and reference data-
sets if the reference value is well chosen. Kim et al. (2015b) suggested
that the maximized R method can improve the temporal R-value of
certain products with respect to reference values, and determined that
the combined dataset is generally superior to those of the individual
products. The combined SSM products were calculated by applying a
weighting factor (w) with a constrained range of 0–1 as follows:

= × + − × ≤ ≤w w wSM SSM (1 ) SSM (0 1),C 1 2 (10)

This combination process was only implemented for a given pixel
when both parent products were available. Moreover, if the R-value of
the combined product in a given location was less than the R-value of
one of the parent products, then the parent product with the higher skill
was used instead of the combined product.

The R-value between SSMC and SSMREF can be expressed as a
function of w:

= =
− −

f w
μ μ

σ σ
SSM SSM

R ( )
E[( )( )]

,
C REFSSM SSM

SSM SSM

C REF

C REF (11)

where μ is the mean of the combined and reference value of SSM
(SMC and SMREF), and σ is the standard deviation of the combined and
reference value of SSM (SMC and SMREF).

To combine two different SSM products (i.e., SSM1 and SSM2) from
Eq. (10), the systematic differences between the reference SSM and
each parent product (i.e., SMAP, ASCAT, and AMSR2) should be re-
moved. Draper et al. (2009) suggested that the normalization of each
product against a reference dataset (accomplished using Eq. (12)),
could be used to remove systematic differences:

= − × +μ
σ
σ

μSSM SSM( ) ,NOR SAT SSM
SSM

SSM
SSMRAW

REF
REF

SAT (12)

where SSMNOR is the normalized SSM against the reference product.
After normalization, Eq. (11) was differentiated with respect to w to
determine the value of w that optimizes the maximum R-value between
SSMC and SSMREF. Finally, we obtained w using

=
− ×

− × + − ×

⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅ ⋅ ⋅

w
R R R

R R R R R R
REF REF

REF REF REF REF

SSM SSM SM SSM

SM SSM SSM SSM SSM SSM SM SSM

1 1 2 2

2 1 2 1 1 1 2 2

(13)

where Rx·y is the correlation coefficient between the two products. In
addition, a numerical method was utilized to maximize R if either
parent product showed a negative R-value. In order to find the max-
imum of a constrained non-linear function, we used the MATLAB
function fmincon (http://au.mathworks.com/help/optim/ug/fmincon.
html). By setting the constraints (0 ≤ w ≤ 1) and the objective func-
tion (Eq. (11)), the weight factors could be optimized numerically. In
total, 157,710 pixels were combined and numerical calculations oc-
curred 5150, 12,798, and 2548 times for the SMAP + ASCAT, ASCA-
T + AMSR2, and AMSR2 + SMAP combinations, respectively.

3. Results and discussion

3.1. Comparison with in situ observations

The results of the statistical metrics for the comparison of GLDAS
SSM, SMAP, ASCAT, AMSR2, and in situ SSM are shown in Table 2 for
the period from 2015 to 2016. The average R-values for all networks
were 0.73, 0.74, 0.64, and 0.65 for GLDAS, SMAP, ASCAT, and AMSR2,
respectively. The average ubRMSD values were (0.0438, 0.0411,
0.0625, and 0.0708) m3 m−3, and the average bias values were (0.0035
(0.03), −0.0460 (0.06), 0.0010 (0.04), and 0.0418 (0.06)) m3 m−3 for
GLDAS, SMAP, ASCAT, and AMSR2, respectively. The values in the

Table 2
Summary of statistical results comparing the different satellite SSM products with ISMN in situ observations.

Site name (NOS) GLDAS SMAP ASCAT AMSR2

R ubRMSD
(m3 m−3)

Bias
(m3 m−3)

R ubRMSD
(m3 m−3)

Bias (m3 m−3) R ubRMSD Bias
(m3 m−3)

R ubRMSD
(m3 m−3)

Bias
(m3 m−3)

COSMOS (20) 0.66 0.0446 0.0160 0.73 0.0409 −0.0276 0.66 0.0594 0.0085 0.54 0.0683 0.0175
REMEDHUS (5) 0.86 0.0315 0.0391 0.83 0.0269 −0.0383 0.79 0.0688 0.0245 0.85 0.0661 0.1053
RSMN (17) 0.61 0.0493 0.0773 0.69 0.0526 0.0516 0.60 0.0867 0.1212 0.57 0.1039 0.1712
SCAN (77) 0.69 0.0461 0.0035 0.70 0.0415 −0.0490 0.61 0.0576 −0.0011 0.60 0.0653 0.0207
SMOSMANIA (5) 0.83 0.0374 −0.0560 0.68 0.0346 −0.1011 0.77 0.0470 −0.0625 0.78 0.0885 0.0569
SNOTEL (38) 0.79 0.0597 −0.0290 0.71 0.0648 −0.0864 0.75 0.0594 −0.0355 0.60 0.0710 −0.0176
SOILSCAPE (3) 0.69 0.0381 −0.0221 0.85 0.0282 −0.0726 0.39 0.0638 −0.0560 0.64 0.0433 −0.0405
USCRN (49) 0.71 0.0434 −0.0010 0.73 0.0392 −0.0443 0.57 0.0572 0.0092 0.65 0.0601 0.0208
Average 0.73 0.0438 0.0035

(0.03)
0.74 0.0411 −0.0460

(0.06)
0.64 0.0625 0.0010

(0.04)
0.65 0.0708 0.0418

(0.06)

Bold values indicate significance at p < 0.05.
*NOS: number of stations. Note: The SWI was considered when the satellite SSM was compared with in situ observations.
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parenthesis indicate the average absolute bias value. In terms of
average R-value, GLDAS and SMAP showed better performance than
the other products. The highest averaged R-value from SMAP compared
with the in situ results were very encouraging; moreover, among all
three satellite SSM products, only SMAP had a higher R-value than
GLDAS in COSMOS (20 of 73), RSMN (17 of 19), SCAN (76 of 1018),
SOLSCAPE (3 of 291), and USCRN (49 of 486) networks. In terms of the
average ubRMSD, GLDAS and SMAP had the lowest values, with SMAP
showing an overall dry bias. AMSR2 had the highest ubRMSD value and
an overall wet bias. In addition, because we chose the GLDAS dataset to
provide the reference values (which show low ubRMSD, bias, and ab-
solute bias values against in situ observations), the ubRMSD and bias
values in the combined products are expected to be greatly improved in
relation to the in situ observations. However, many observations of R-
values from GLDAS were similar to or less than those of SMAP; there-
fore, the R-value for the combination of SMAP with other products is
expected to be barely improved; perhaps even decreased. Please find
details in the discussion in Section 3.3.

3.2. Comparison using TC statistics

The in situ-based statistical results provide only limited regional
satellite SSM performance and have scale mismatch issues. These lim-
itations can be addressed by employing TC analysis. This enables in-
spection of global scale satellite-based SSM datasets. In this section,
each product was compared using TC metrics. A simple sensitivity
analysis was conducted in terms of different VOD ranges because ve-
getation is one of the most important parameters in the SSM retrieval
algorithm (O'Neill et al., 2016). Furthermore, the results were inter-
preted using land classification datasets to provide the advantages and
limitations of using certain satellite products for practical applications
at global scale.

3.2.1. Global trends from TC statistics
Fig. 3 shows global maps of three different TC metrics (SNR[dB],

Ri
2, and fMSE) for SMAP, ASCAT, and AMSR2. Similarly, in Fig. 4, the

statistical performance of SNR[dB] for three satellite products was
calculated and is ranked on the basis of higher value.

The TC results (Fig. 3) indicate that all satellite products have
limitations in retrieving SSM in northern Africa, the Middle East,
northern Asia, regions of Central Australia, and the western USA; where
most of the world's large, bare deserts and arid regions are located.
Most of these regions were classified as desert and semi-desert by the
BATS model (Fig. 1), had a VOD value < 0.20, and showed a high
average sand fraction value (49.35%). These regions are known for high
systematic retrieval error because the soil is extremely dry, and mi-
crowave-based SSM retrieval systems suffer significant challenges in
providing a reading (Dorigo et al., 2010). First, these challenges are
associated with problems in estimating the thickness of the emitting
layer and the effective temperature (Holmes et al., 2006). Microwave
bands of lower frequency (i.e., L- or C1-bands) penetrate dry soils even
deeper and signals from deeper layers; therefore, significant problems
arise when SSM is retrieved not only from passive microwave band
instruments but also from active microwave band instruments in arid
and semi-arid environments (Ulaby et al., 2015; Escorihuela et al.,
2010; Wagner et al., 2013). Also, arid regions have very little SSM
variation and changes in the SSM signal are often too small to exceed
the background noise of the instrument. This adds to difficulties in
retrieving SSM information using microwave-frequency observations.
However, in the present research, only 3211 of 33,850 pixels (9.5%)
(total number of desert and semi-desert pixels) were available for in-
vestigation of these regions. This means that definitive results can only
be obtained after getting more and larger datasets to study in the future.

Fig. 5a shows that ASCAT had the lowest number of the best SNR
[dB] pixels in these areas, as indicated by the negative SNR[dB] (see the
x-axis VOD range of 0.00–0.20). This is a well-known active sensor
issue: they appear to be more sensitive to sub-surface heterogeneities or
surface roughness (Wagner et al., 2003; Gruhier et al., 2010; Wagner
et al., 2013). Wagner et al. (2013) also indicated that over some desert
areas, passive SSM products are recommended for use, particularly over
regions for which the value of VOD is ~0.00–0.20, and the average
desert and semi-desert areas account for 82.5% of the land surface
(Figs. 1 and S3).

For the VOD range between 0.00 and 0.10, the TC statistics for
SMAP, ASCAT, and AMSR2 are shown in Fig. 5b (SNR[dB]: 1.57,
−1.48 and 0.66), Fig. 5c (Ri

2: 0.56, 0.45, and 0.53), and Fig. 5d (fMSE:

Fig. 3. Global maps of the statistical results for the SMAP (first row), ASCAT (second row), and AMSR2 (third row) SSM datasets: (a)–(c) for SNR[dB] estimates, (d)–(f) for Ri
2 estimates,

and (g)–(i) for fMSE estimates for the period April 2015 to December 2016. The red boxes in (g), (h), and (i) indicate the apparent contrast of fMSE between active and passive products.
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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0.44, 0.55, and 0.47). All products showed high fMSE in these regions.
Over an extremely dry surface, an active sensor can produce a wet bias
from the unpredictable volume scattering from deeper soil layers or
scattering from subsurface heterogeneity; as a result, erroneously
higher SSM retrievals can be produced. This is supported by previous
research indicating that the amount of backscatter decreased when the
soil became slightly wet over desert or semi-arid environments (Wagner

et al., 2013). Moreover, the dielectric property of quartz, which is
significant given the very high sand fractions in desert and semi-desert
regions (see Figs. 1 and S4), can hamper retrieval of SSM by passive
satellites (Pan et al., 2016). However, the passive-based datasets
showed slightly better performance than did the ASCAT dataset for arid
regions. This is apparent in the result of fMSE in Fig. 5d. The average
value of the fMSE of ASCAT was> 0.5 and showed only negative SNR

Fig. 4. Comparisons, in terms of SNR[dB], among the SMAP, AMSR2, and ASCAT SSM datasets for the period April 2015 to December 2016. The map shows the areas where SMAP (red),
ASCAT (green), and AMSR2 (blue) have the highest SNR[dB] values. The yellow pixels indicate where all three SNR[db] values are similar. The areas where the condition of
|#1–#2| < 3db & |#2–#3| < 3db & |#1–#3| < 3db is fulfilled. The white pixels indicate insignificant results (p≥ 0.05). (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

Fig. 5. Bar graphs showing (a) the percentage of the pixels with the best TC metrics (see Fig. 4) for various satellites for six different ranges of VOD values. (b) Average SNR[dB] for
various satellites in terms of six ranges of VOD values. (c) Same as (b) but for Ri

2; (d) Same as (b) but for fMSE. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)
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[dB] among all products. This indicates that the ASCAT SSM observa-
tions for such regions have higher noise variance than that of the ob-
served SSM signals.

As VOD increased from a sparsely vegetated value
(0.00 < VOD < 0.20) to a moderately vegetated value
(0.20 < VOD < 0.40), where crop and mixed farming, and tall and
short grass are the major surface covers (Fig. 1c), the average SNR[dB]
values for ASCAT and SMAP remarkably increased, whereas those for
AMSR2 notably decreased after VOD exceeded 0.20. Over the moder-
ately vegetated areas, SMAP had the highest SNR[dB], at 5.16–7.38
(red bars in Fig. 5b). Over more vegetated regions (0.40 < VOD <
0.60), where> 76% of the area was covered by trees (Fig. 1c), ASCAT
had the best SNR[dB] (green bars in Fig. 5). These results imply that
ASCAT has better ability to reproduce accurate temporal patterns of the
SSM than those of passive-based satellite products over densely vege-
tated areas. Moreover, the apparent contrast of fMSE between active
and passive products are shown in the red boxes in Fig. 3(g)–(i). One of
the reasons for this result is that active microwave sensors are known to
be less sensitive to surface temperature effects than passive sensors.
This is a known characteristic of the instrument; thus, the active sensor
can show better performance over widely varying temperature regions.
Therefore, ASCAT showed less susceptibility to diurnal surface tem-
perature variation over densely vegetated areas. Our results were
consistent with the findings in several previous studies (Scipal et al.,
2008b; Dorigo et al., 2010; Al-Yaari et al., 2014b). However, con-
sidering alternative technologies, the passive microwave SSM retrievals
could be improved if the effective temperature estimates were para-
meterized (Parinussa et al., 2011).

When two passive products were compared, SMAP showed better
results in the statistical metrics for almost all the vegetation ranges.
Over densely vegetated regions, the average SNR[dB] from SMAP de-
creased from 7.38 to 3.17 (red bars in Fig. 5b), and the SNR[dB] from
AMSR2 remained< 3 (blue bars in Fig. 5b). This difference is likely
attributable to the operating band. The C- and X-band frequencies of the
passive sensors can easily be attenuated by vegetation, which makes
their measurements relatively insensitive to SSM variability. The lower
frequency band of SMAP (i.e., L-band) penetrates vegetation better than
the AMSR2 high-frequency bands (i.e., C1-, C2-, and X-bands). Fur-
thermore, during the early morning, both the near-surface temperature
change and Faraday rotation effects were at their minimum (Kerr et al.,
2001). These conditions aid in the retrieval of SMAP SSM from the
passive microwave radiometer at the 06:00 LT overpass time (Le Vine
and Abraham, 2000; Jackson et al., 2010). In addition, it is noteworthy
that areas with VOD values of> 0.6 had SSM datasets masked out,
meaning that SSM retrieval from dense forests, such as those of the
Amazon and Southeast Asia, remains impossible.

When the fMSE values were carefully investigated, as Fig. 5d shows,
it became clear that the AMSR2 product should be carefully reviewed
before using it for practical applications in densely vegetated areas
(VOD > 0.50), as was also apparent from the negative SNR[dB] results
in Fig. 5b (average fMSE value > 0.50). This indicates that AMSR2
SSM observations in these regions have higher noise variance than the
observed SSM signal variance.

3.3. Evaluation of combined soil moisture products

As discussed in Section 3.2, different products showed distinctive
performance and error characteristics over land with different proper-
ties and in different climate zones. We assumed that the combination of
different products would provide complementary abilities that could
increase the R and lower the ubRMSD and bias values. To combine a
pair of different SSM products, the maximized R approach was utilized
(Section 2.6.3) using the GLDAS products as the reference data set.
Table 3 shows the results of the statistical metrics for GLDAS (Table 3;
first column), the original satellite SSM (Table 3; second column), and
the combined product based on GLDAS (Table 3; third column) against Ta
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the in situ observations. The datasets were separated into two parts:
calibration dataset for 2015, and validation dataset for 2016, to achieve
an independent validation process.

Except for the R-value results of SMAP, the R-values of combined
product AMSR2 + ASCAT were improved when compared with the

original products alone. This result can be explained by the perfor-
mance of the reference dataset against in situ observations. Because
many in situ observations in GLDAS had lower R-values than in SMAP,
the computation of the weights was affected and resulted in calculation
of sub-optimal weights. Therefore, the SMAP R-value rarely showed

Fig. 6. Box plots of R-values at different VOD ranges for original products (red boxes) and combined products (green or blue boxes). The number of datasets (NOD) for each VOD bin
appears above each box plot. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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large improvement or even decreased, even after combination with
other products. However, these points also imply that SMAP could be
utilized to provide reference values to improve the temporal dynamics
of GLDAS SSM datasets. In addition, because we chose a reference da-
taset with low ubRMSD (0.0411 m3 m−3) and bias (0.0109 m3 m−3)
values against in situ observations, the ubRMSD and bias values in the
combined products were greatly improved.

Fig. 6 presents the box plots of R-values for the parents and com-
bined products for six different VOD ranges worldwide. The red boxes
represent the R-values of each original product, and the green and blue
boxes indicate combined products. In Fig. 6a, the average R-values of
SMAP consistently increased as the VOD ranges increased. When SMAP
was combined with ASCAT (i.e., SMAP + ASCAT), increased average R-
values for VOD ranges over 0.50 were observed in the combined pro-
duct. However, for VOD ranges< 0.40, the R-value of SMAP products
were hardly improved by the combination process because ASCAT and
AMSR2 showed lower SNR[db] than did SMAP in these regions (Fig. 5).
Considering the TC results, in which SMAP showed the best SNR[db]
over the VOD range 0.00–0.40 and ASCAT showed the best SNR[db]
over the VOD range 0.40–0.60, these results are natural consequences.

As shown in Fig. 6b, the R-values from ASCAT (red boxes) con-
tinuously increased as the VOD increased. When ASCAT was combined
with SMAP (SMAP + ASCAT; green boxes in Fig. 6b) and AMSR2
(SMAP + AMSR2; blue boxes in Fig. 6b), the averaged values of R in-
creased rapidly at VOD < 0.20. Moreover, SMAP + ASCAT slightly
increased as the VOD increased, before reaching 0.40. ASCA-
T + AMSR2 (blue boxes in Fig. 6b) did not show improvement for
VOD > 0.20 (green boxes in Fig. 6b). These results indicate that
AMSR2 could be utilized to improve the performance of ASCAT over
sparsely vegetated areas, and that SMAP is a good choice to improve
ASCAT except over densely vegetated areas. These results are well ex-
plained by the SNR[db] results as well.

As shown in Fig. 6c, the average R-value of AMSR2 (red boxes)
increased for VOD < 0.30 (0.28–0.67); however, it decreased for
VOD > 0.30. In particular, for VOD > 0.40; ASCAT + AMSR2 (blue
boxes in Fig. 6c) compensated for the decreasing pattern in average R-
value from AMSR2 better than AMSR2 + SMAP did (green boxes in
Fig. 6c). These results suggest that for VOD > 0.40, ASCAT can be
recommended as a strong candidate for combination with passive SSM
retrieval. However, in the lower VOD range, AMSR2 is a relatively
stronger contributor because it improves the temporal dynamics of both
ASCAT and SMAP products (blue boxes in Fig. 6a and b). When ASCAT
is considered for combination with passive satellite data over densely
vegetated areas, it is better to choose a lower frequency (L-band) for
SSM retrieval than a higher frequency. The L-band frequency offers the
added advantage of being able to take measurements in conditions with
denser vegetation than is possible with the C- or X-bands (green boxes
versus blue boxes in Fig. 6b).

The results above emphasize that utilizing a variety of SSM datasets
has great potential for remedying the shortcomings of individual pro-
ducts in challenging surface regions.

Box plots of the ubRMSD and bias are included in Figs. S5 and S6.
Because the ubRMSD and bias values were calibrated using a normal-
ization approach, the combined products had ubRMSD values around
0.04 (m3 m−3) and bias values around 0.01 (m3 m−3).

Fig. 7 presents two Taylor diagrams, illustrating the statistical
comparison of the original and the combined products against in situ
observations from each ISMN in 2016. The temporal variability in the
original products is demonstrated by the SDV value results. In Fig. 7(a),
the SDV values of the original SMAP, ASCAT, and AMSR2 products,
represented by red, green, and blue symbols in the figure, are scattered
widely in the SDV range 0.4–2.3. In Fig. 7(b), the SDV values of the
combined SMAP + ASCAT, AMSR2 + SMAP, and ASCAT + AMSR2
products, represented by red, green, and blue symbols in the figure, are
gathered near the SDV range 1; straight lines with red, green, and blue
colors indicate the average R-values for each product. The SDV value is

the ratio between the SMSAT and SMIN SITU standard deviations. This
statistic indicates that the variability from ground observation is lower
than that of the original and combined products if the SDV is< 1, and
vice versa. Moreover, the combined product SDV values are more tightly
clustered than the original SDV values; most values are close to ‘1’. This
means that for the products showing temporal variation similar to that
of the in situ observations, the combined reproduced lower bias SSM
information than the other original products. As we discussed in Section
3.3, the maximized R method highly depends on the performance of the
reference values with in situ observations. We utilized the GLDAS da-
tasets that showed better R-values than ASCAT and AMSR2 datasets,
but similar or smaller R-values than SMAP datasets. However, the
GLDAS datasets showed better results of ubRMSD and a higher absolute
bias than all three products against in situ observations (Table 3). For
these reasons, ASCAT and AMSR2 could be improved by SMAP at all
sites (straight lines in Fig. 7). Unsurprisingly, the R-value of SMAP
hardly improved because SMAP showed a better performance against in
situ observations than the reference value. However, ubRMSD and bias
highly improved because ubRMSD and bias of the reference datasets
were closer to zero compared to in situ observations (SDV values in
Fig. 7). These results emphasize that SMAP can be utilized as a re-
ference value for combining the two different datasets to improve the
temporal pattern of SSM for satellite-based datasets as well as the model
SSM datasets. However, GLDAS datasets are recommended as the re-
ference value to reduce the ubRMSD and bias value.

4. Conclusions

In the present study, we investigated the widely used (ASCAT and
AMSR2), and a relatively new (SMAP), satellite-based SSM datasets
from active and passive microwave sensors and combined them to
evaluate the performance of each combined product. First, we com-
pared ASCAT, AMSR2, and SMAP SSM retrievals using in situ observa-
tions from 213 stations worldwide. These products were evaluated
considering the degree of vegetation and surface properties using TC
statistics. Second, we combined these three products using the max-
imized R method, which can be used to maximize the temporal corre-
lation coefficient of the combined products. The GLDAS dataset was
used assuming that it had the highest data quality for use with the
maximize R method. Finally, we evaluated the performances of the
combined products, focusing on the SMAP for the combination process.
The major findings of this study are given in the following points.

1. The validation results of all satellite-based SSM products and the
GLDAS dataset compared with in situ observations showed that
SMAP had the strongest agreements with the temporal dynamic of
SSM. SMAP had an average R-value of 0.74 along with a low value
of ubRMSD (0.0411 m3 m−3) and dry bias (−0.0460 m3 m−3). In
comparison, AMSR2 had a wet bias on average (0.0418 m3 m−3).
ASCAT had the least bias and absolute bias (0.0010 m3 m−3 and
0.04 m3 m−3) among all the satellite products. In addition, AMSR2
had the highest ubRMSD among all products (0.0708 m3 m−3),
which suggests special care be taken in using the AMSR2 product for
certain applications.

2. When all satellite products were investigated on the basis of TC
statistics on a global scale, it was difficult to retrieve SSM from
certain regions of northern Africa, the Middle East, northern Asia,
Central Australia, and the western USA. These regions are mostly
arid, with 82.5% of the land surface either desert or semi-desert. In
particular, ASCAT showed only negative SNR[dB] and the highest
fMSE among all products.

3. Over the moderately vegetated areas (VOD range 0.10–0.40), the
average SNR[dB] of all products increased significantly compared to
that over low- and high-vegetated areas. Although the SNR[dB]
from ASCAT increased as the VOD increased, the SNR[dB] from
SMAP decreased slightly, and the SNR[dB] from AMSR2 decreased
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more rapidly. Furthermore, when VOD < 0.40, SMAP had the best
SNR[dB] among all products.

4. Over densely vegetated areas (VOD range 0.40–0.60), ASCAT
showed higher SNR[dB] than other products. In contrast, AMSR2
showed only negative SNR[dB] and the highest fMSE among all
products.

5. Over the highly vegetated regions (VOD > 0.50) ASCAT performed
better, especially when combined with SMAP, which increased the
temporal variability of the SSM. This indicates that SSM retrieved
using an active microwave sensor has the potential to enhance
passive microwave sensor products. In particular, the accuracy of
temporal variability from SMAP + ASCAT tended to be better than
that in other combined products.

6. SMAP showed good performance when combined with other pro-
ducts, which improved its accuracy in reproducing SSM temporal
variability over the sparsely- and moderately-vegetated areas. This
suggests that SMAP is a strong candidate for combination with
several satellite-based SSM products except over the densely-vege-
tated regions.

7. The combined products from different satellite-based SSM datasets
demonstrated the possibility of overcoming the limitations of in-
dividual products in challenging regions. Hence, this work con-
tributes to the improvement of the application of satellite-based SSM
in various fields such as NWP, agriculture and forest management,
dust outbreaks, water resource and irrigation management, and
many other surface processes.

In the future, study of various correction methods such as cumula-
tive distribution function matching, linear regression correction, and
the time-varying weight approach will lead to better performance of the
combined products. Also, we used the original version of the SMAP SSM
dataset, and its SSM retrieval algorithms will be improved in the near
future by field campaigns such as the SMAP Validation Experiment.
Especially, different ASCAT SSM products such as the time series

products distributed by H-SAF may show better quality than the NRT
data found in the EUMETSAT archive. These datasets are expected to be
significantly improved in the upcoming product release. Moreover, use
of the improved datasets of the parent products provides potential for
the combination products to be improved as well.

All satellite products currently improve rapidly when spurred by
positive competition; thus, the new mission, SMAP, has considerable
potential for being complemented with existing satellite SSM products.
In addition, many possibilities remain for improving AMSR2 SSM re-
trieval because the AMSR2 LPRM SSM products are expected to be
much improved through enhanced versions before the final version was
released.

The updated and alternate choice for satellite-based SSM and re-
analysis datasets can be utilized in future research to provide a better
understanding of operational hydrological investigations and to im-
prove combined active/passive satellite products.
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