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Abstract Root zone soil moisture (RZSM) is a crucial variable in land-atmosphere interactions. Evaluating
the spatiotemporal trends and variability patterns of RZSM are essential for discerning the anthropogenic
and climate change effects on the regional and global hydrological cycles. In this study, the trends of
RZSM, computed by the exponential filter from the European Space Agency’s Climate Change Initiative

soil moisture, were evaluated in major climate regions of East Asia from 1982 to 2014. Moreover, the
trends of RZSM were compared to the trends of precipitation (P), skin temperature (Tgin), and actual
evapotranspiration (AET) to investigate how they influence the RZSM trends in each climate region. Drying
trends were predominant in arid and continental regions, whereas wetting trends were found in the tropical
and temperate regions. The increasing trends of Ty, and AET cause drying in arid and continental
regions, whereas in tropical regions, these cause wetting trends, which might be due to convective P. In
temperate regions, despite decreasing P and increasing Ty, the RZSM trend was increasing, attributed to
the intensive irrigation activities in these regions. This is probably the first time to analyze the long-term
trends of RZSM in different climate regions. Hence, the results of this study will improve our understanding of
the regional and global hydrological cycles. Despite certain limitations, the results of this study may be
useful for improving and developing climate models and predicting long-term vast scale natural disasters
such as drought, dust outbreaks, floods, and heat waves.

1. Introduction

The amount of soil moisture (SM) seems negligible (approximately 0.0012%) compared to the total amount of
water in the Earth system [Gleick, 1996]. Nevertheless, it is highly important in regulating the water, energy,
and carbon fluxes between the land surface and atmosphere [Koster et al., 2004; Jung et al., 2010]. It directs
the P between runoff and infiltration, as well as incoming radiation between latent and sensible heat fluxes
[Taylor et al., 2012; Loew et al., 2013]. It is also an important parameter for various scientific applications and
disaster predictions, which include water resource management, drought predictions, floods, dust outbreaks,
and weather predictions [Dorigo et al., 2012; Loew et al., 2013; Brocca et al., 2014a; Kim and Choi, 2015; Kim
et al., 2017]. In 2010, regarding its importance in hydrological and climate applications, the Global Climate
Observation System declared SM as an essential climate variable (ECV) for studying the global climate system
[Dorigo et al., 2012, 2015; Brocca et al, 2014b; European Space Agency's Climate Change Initiative,
2010, http://www.esa-soilmoisture-cci.org/].

Studying the trends and variability of SM is of utmost importance for understanding global and regional hydro-
logical cycles. Moreover, it helps in interpreting the effect of human interference and climate change on hydro-
logical processes [Qiu et al, 2016; Feng, 2016], which affects weather patterns, water consumption, and
agricultural needs. Conventionally, SM variations and its interaction with the climate system have been studied
using ground-based observations [Huang et al., 2008; Guan et al., 2009; Wang et al., 2010; Brocca et al., 2011].
However, the limited availability in space and time make their use inappropriate for study at large spatial and
temporal scales. Recent studies emphasize the use of model-based SM products to study SM variability and
related hydrological variations at larger temporal and spatial extents [Zhu and Lettenmaier, 2007; Yang et al.,
2007, 2008; Sheffield and Wood, 2008]. However, the accuracy of model-based SM highly depends upon several
factors, such as the quality of the forcing data sets of a model, the substantial heterogeneity of indistinct soil prop-
erties in horizontal and vertical layers, and the nature of the assumptions made for understanding the complex
processes [Ferguson and Wood, 2011; Hain et al., 2011]. Moreover, most of the currently available land surface
models do notincorporate anthropogenic activities, such as irrigation, urbanizations, and large-scale water diver-
sion projects, which significantly change SM dynamics [Drewniak et al., 2013; Qiu et al., 2016; B. Yang et al., 2016].
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Remotely based SM retrieval from space is a promising tool for studying the behavior of SM at global and
regional scales. Specifically, satellites can view global SM variability through active and passive microwave
frequency sensors with sufficient spatial and temporal resolutions and reasonable accuracy [Entekhabi
et al, 2010; Kerr et al, 2012; Wagner et al., 2013; Loew et al., 2013]. Many researchers previously used
satellite-based SM products, especially from microwave frequency sensors, for examining the spatial and
temporal patterns of SM [Wagner et al., 2007; Juglea et al., 2010; Su et al., 2011; Choi, 2012; Rebel et al.,
2012]. Several global SM products from space have been retrieved with different frequency sensors, retrieval
systems, and algorithms [Njoku et al., 2003; Bartalis et al., 2006; Owe et al., 2008], but none of the individual
product covers the long-term period needed for climate records and long-term analysis. To obtain long-term
SM observations from the space, a first attempt to merge SM products from different active and passive
microwave satellites was introduce by Liu et al. [2011a, 2012], under the European Space Agency (ESA)
Program on Global Monitoring of essential climate variable (ECV). Many studies have utilized the ESA's
Climate Change Initiative (CCl) SM for analyzing the SM trend [Dorigo et al., 2012; Feng and Zhang, 2015;
Qiu et al., 2016; Chen et al., 2016]. Recently, Feng [2016] utilized the ESA CCI SM to analyze the isolated effect
of climate and vegetation change across different spatial scales. This research found that the climate change
is the major contributor to the SM trend globally, whereas vegetation change regulates the SM trend at regio-
nal and local scales.

Satellite-based remote sensing provides only near-surface SM (SSM) estimates (0-5 cm); however, RZSM is as
important as SSM in land surface-atmosphere interactions because it directs transpiration, which is the lar-
gest contributor to total land ET [Dirmeyer et al., 2006; Lawrence et al, 2007; Seneviratne et al., 2010;
Konings and Gentine, 2016]. The previous researchers showed that RZSM is well correlated with the near-
surface SM [Choi and Jacobs, 2007; Albergel et al., 2008; Mahmood et al., 2012; Ford et al., 2014]. In this regard,
RZSM has been estimated from various satellite surface SM retrievals using the exponential filter method
[Wagner et al., 1999], including the European Remote Sensing (ERS) satellite scatterometer [Wagner et al.,
1999; Ceballos et al., 2005], advanced scatterometer (ASCAT) [Albergel et al., 2009; Brocca et al., 2010, 2011,
2013], and Soil Moisture and Ocean Salinity (SMOS) [Ford et al., 2014]. The results of validation studies encou-
rage the use of this method for estimating RZSM from surface SM estimates.

This study explores the trend and variability of RZSM in four major climate classes of East Asia (20°N-55°N and
70°E-140°E), according to Képpen climate classes [Peel et al., 20071, for a period of 33 years (1982-2014). The
analysis in this study was based on the ESA CCl SM merged product. First, the RZSM was estimated from the
ESA CCI SM by the recursive form of the exponential filter [Albergel et al., 2008]. Second, a trend analysis was
performed on the time series of RZSM, P, Tyin, and AET products in each climate class. Third, the correlation
coefficient (R) between RZSM-P and RZSM-Ty,;,, was analyzed in each climate class to identify their contribu-
tion on the RZSM trend. Finally, the trend pattern in RZSM caused by P and T, was justified by the trend of
AET and the expected influencing mechanism was discussed.

This study is unique because most of the existing literature focuses on the trends of surface SM [Sheffield and
Wood, 2008; Dorigo et al., 2012; Cheng et al., 2015; Qiu et al., 2016]; however, RZSM is also an essential variable
in land-atmosphere interactions. To the best of authors’ knowledge, no study has been conducted to analyze
the long-term trend and variability of RZSM based on satellite observations in different climate zones. The
results of this study will be helpful in improving climate models by considering the trend of RZSM in different
climate regions and the effect of human interference on the hydrological cycle.

2. Material and Methodology
2.1. Study Area

The eastern subregion of the Asian continent, East Asia (20°N-55°N, 70°E-140°E), was selected to investigate
the RZSM trend in different climate classes. This part of the world is one of the most populous regions with
diverse land surface cover and fragile ecosystem and hence is highly vulnerable to climate change [Shao,
2004; Hu et al., 2008; Piao et al., 2010; Liu et al., 2015; Cheng et al., 2015].

According to the Kdppen-Geiger climate classification, East Asia contains four major climate classes: tropical,
arid, temperate, and continental (Figure 1). The tropical climate is dominant in the southern part of the study
area, including parts of India, Nepal, Bhutan, and Bangladesh. Annual average P is highly varied, generally
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Figure 1. Climate zone classifications of the study region.

above 1000 mm across the region, and reaches up to 2500 mm on the seaside-facing highlands [Li et al.,
2012]. Approximately 80% of the P falls during the hot-humid season (April-September), and the rest falls
during the dry season [Zhang et al., 2006; Deng et al., 2012].

The arid climate is prominent in the high plains and desert regions of northern China and Mongolia and is
characterized by large temperature differences between summer and winter [Li et al., 2012]. P ranges from
40 to 150 mm yr~" on the plains to 300 mm yr~" in the mountains [Genxu and Guodong, 1999].

The temperate climate regions are mostly located in the southeastern regions of China, northern Japan,
Nepal, and most part of the India, characterized by mild winters and summers [Gunaratnam and Li, 2010].
Mean annual P is comparatively low in the north (e.g., approximately 521 mm at Beijing) and somewhat
higher in southern China and Japan (1205 mm at Sendai, Japan, and 1683 mm at Guangzhou, China), where
it falls mostly in summer as a result of the East Asian Monsoon and typhoons [Li et al., 2012].

The continental climates are characterized by significant annual variation in temperature and are mostly dry;
these areas usually occur in the northern hemisphere, because the southern hemisphere mostly consists of
the sea. This climate tends to be found between latitudes 37°N and 60°N. In East Asia, this type of climate
is found in southern Russia, northeastern China, Siberia, Mongolia, and the Korean Peninsula.

2.2, Data Sets

2.2.1. ESA CCI Soil Moisture

The ESA CCI SM product is an important data set because it is the only long-term satellite-derived SM. The ESA
CCI SM data set has a spatial resolution of 0.25° x 0.25° with daily temporal resolution, representing a depth of
~2-5 cm and spanning for a period of 37 years (November 1978 to December 2015). In this study, the latest
version 3.2 merged product, released in March 2017, was used. The merged product is derived by blending
the active and passive products [Dorigo et al., 2010; Seneviratne et al., 2010; Liu et al., 2011b, 2012]. Active
products include the ASCAT onboard the METeorological OPerational (METOP-A and METOP-B) satellite
and scatterometers onboard the ERS-1 and ERS-2 satellites. Passive products include the Nimbus 7 scanning
multichannel microwave radiometer, the Defense Meteorological Satellite Program Special Sensor
Microwave/Imagers, Tropical Rainfall Measuring Mission Microwave Imager, Aqua Advanced Microwave
Scanning Radiometer-Earth Observing System, Coriolis WindSat, Global Change Observation Mission
1st-Water Advanced Microwave Scanning Radiometer-2 (AMSR2), and SMOS [Dorigo et al., 2016].
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This newer version of ESA CCl data set utilized the improved merging technique based on the signal-to-noise-
ratio estimates and the improved estimates of random errors through triple collocation analysis. Before
merging the data sets from different sensors, they were harmonized by matching the cumulative density
function (CDF) of the absolute SM values to the Global Land Data Assimilation System Noah SM [Rodell
et al., 2004]. Liu et al. [2012] showed that the CDF matching technique affects the absolute values, but the
dynamics and trends are preserved. Dorigo et al. [2015] comprehensively validated the ESA CCl SM, using
596 in situ observation sites from 28 different observing networks, and found that its performance varies
across the networks and time period. Further, C. H. Su et al. [2016] found that the inhomogeneities in the
ESA CCI SM data caused by the transition of the sensors, retrieval algorithms, and instrumental drift and fail-
ure induce erroneous trends. However, the errors caused by these inhomogeneities were within the accep-
table error range of 0.003 m® m™3 yr~', stated by Global Climate Observing System [2011]. Additionally,
some previous researchers pointed out the limitations of the microwave-based SM retrievals over extremely
dry regions, such as deserts and semideserts [Gruhier et al., 2010; Wagner et al., 2013]. Despite these discre-
pancies, many researchers previously showed that the trends in the ESA CCI SM are consistent with those
from various reanalysis of SM and P products as well as vegetation growth [Albergel et al., 2012; Dorigo
et al., 2012; Loew et al., 2013]. Based on these previous research studies and improved merging techniques,
we expect that the ESA CCl SM data have enough accuracy for predicting RZSM and its trend analysis. Overall,
the merged product was supposed to be superior to either active or passive products individually, except
regarding the ASCAT product [Dorigo et al., 2015].

2.2.2. ERA-Interim Skin Temperature Data Set

Tskins also known as the radiometric temperature, is derived from thermal emission of the Earth’s surface and
is generally an average of various canopies and soil surface temperatures [Hall et al., 1992; Betts et al., 1996].
Since it is the physical temperature of the Earth’s surface and is more directly related to surface properties
than surface-air temperature, it is important for understanding many terrestrial biogeophysical processes
[Prigent et al., 2003; Jin et al., 1997]. Ty, and air temperature (1.5-2 m) are significantly different in terms
of magnitude, response to atmospheric conditions, and diurnal phase [Garratt, 1995; Jin and Dickinson,
2010]. To derive Tgn, the energy and water fluxes at the land-atmosphere interface were parameterized
by an updated land surface Hydrology scheme, the Tiles European Centre for Medium-Range Weather
Forecasts (ECMWF) Scheme for Surface Exchanges over Land. In this scheme, each grid box is assigned a dif-
ferent set of possible surface types or tiles, namely, bare ground, low and high vegetation, intercepted water,
and shaded and exposed snow over land [Viterbo and Beljaars, 1995; Balsamo et al., 2009; Trigo et al., 2015].
For each tile, Ty, is derived by solving the surface energy balance equation assuming that the skin layer has
no heat capacity [Dutra et al., 2010; Trigo et al., 2015]. The ECMWF T, is then estimated as the weighted
average of tiled T, Trigo et al. [2015] evaluated the ERA-Interim Ty, by the Meteosat Second
Generation (MSG) surface temperature, and found that the ERA-Interim Ty, slightly overestimates the
MSG surface temperature at nighttime and underestimates at daytime, most prominently in arid and semi-
arid regions. Similarly, Fréville et al. [2014] showed that the ERA-Interim Ty, overestimates the Moderate
Resolution Imaging Spectroradiometer (MODIS) Ty, in Antarctica. Despite this inconsistency in absolute
values at the daily time step, it is believed that the ERA-interim T, is helpful in extracting meaningful infor-
mation about trends because of its reliable land forcing data, including in situ and satellite observations [Dee
et al., 2011]. Various researchers demonstrated the quality of ERA-interim fields by comparing with observa-
tion data sets and found good agreement [Balsamo et al., 2009; Simmons et al., 2010; Szczypta et al., 2011;
Decker et al, 2012]. The ECMWF ERA-interim reanalysis Ty, data set has a spatial resolution of
0.25° x 0.25° and is available from 1979 to 2014. However, in this study, the monthly mean Ty, from 1982
to 2014 was used to analyze its effect on RZSM trends.

2.2.3. Multi-Source Weighted-Ensemble Precipitation Data Set

The P data from Multi-Source Weighted-Ensemble Precipitation (MSWEP) 3-hourly 0.25° x 0.25° global
gridded data set available from 1979 to 2015 [Beck et al., 2016] were used in this study. The data set was
designed by merging different P data sources of the highest quality available, including gauge-based, satel-
lite, and reanalysis. The long-term mean of MSWEP was based on the Climate Hazards Group Precipitation
Climatology data set but was replaced with more accurate regional data sets where available. The gauge
undercatch and orographic effect problems were overcome by taking the catchment-averaged P from the
streamflow (Q) across the globe. The temporal variability of MSWEP was determined by weight-averaging
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P anomalies from seven different data sets. Beck et al. [2016] evaluated the performance of the MSWEP and
four other P data sets independently against FLUXNET tower stations and for hydrological modeling used in
the Hydrologiska Byrans Vattenbalansavdelning hydrological model [Bergstrém, 1992] at 9011 different
catchments (<50,000 km?) across the globe. Among all P data sets, MSWEP showed the best performance
in terms of R, Nash-Sutcliffe efficiency (NSE), and root-mean-square error (RMSE) but performed average in
terms of absolute bias (median R = 0.67 versus 0.44-0.59 and NSE of 0.52 versus 0.29-0.39 for other data sets).
Nair and Indu [2017] assessed the performance of MSWEP P over India in different seasons and found that its
performance is region- and season-dependent. However, it showed good performance (R: 0.86, bias: —0.049,
and RMSE: 0.1788) in detecting daily rainfall and poor performance in detecting the higher extremes with
reference to the gauge-based Indian Meteorological Department rainfall.

2.2.4. GLEAM Evapotranspiration Data Set

The Global Land Evaporation Amsterdam Model (GLEAM) is a set of algorithms, specifically developed for
estimating the global ET at 0.25° x 0.25° spatial resolution and daily time scale. Also, it provides the RZSM
based on a multilayer water-balance model. It is the first global model that utilizes the satellite SM as a
forcing data set for constraining potential evaporation rates [Miralles et al., 2011]. This algorithm is mainly
based on the Priestley and Taylor [1972] radiation-based evaporation model, but it also utilizes the Gash
analytical model [Gash, 1979; Miralles et al., 2010] to estimate the forest interception loss and vegetation
optical depth, a proxy for the vegetation water content [Liu et al., 2013], in the calculation of the evapora-
tive stress [Miralles et al., 2011, 2014b; Martens et al., 2016]. The validation of the third version (v3) GLEAM
data set against 64 eddy-covariance towers and 2338 SM sensors across the globe showed an improved
performance of SM and ET fluxes in terms of R and unbiased root-mean-square difference (UbRMSD): SM
(R: 0.61 to 0.64 and ubRMSD: 0.060 to 0.059), and ET (R: 0.80 to 0.79 and ubRMSD: 0.79 to 0.73). The
GLEAM ET and SM data sets have been widely used to study the spatial variability and trends in the water
cycle [Jasechko et al., 2013; Greve et al, 2014; Miralles et al., 2014a; Zhang et al., 2016] and land-
atmosphere feedback [Miralles et al., 2014b; Guillod et al., 2015]. This study utilizes the AET data set from
the third version (v3) of GLEAM [Martens et al., 2016] to inspect its effect on the trends of RZSM in differ-
ent climate regions of East Asia.

2.2.5. Climate Classification Data Set

The Koppen climate classification system was originally developed by Wladimir K6ppen [1900] and modified
over time by many researchers as more recent data became available [Triantafyllou and Tsonis, 1994; Stern
et al., 2000]. The Képpen-Geiger climate classification map used in this study is based on a large global data
set of long-term monthly P and temperature station time series [Peel et al., 2007]. It is available from the Oak
Ridge National Laboratory Distributed Active Archive Center (ORNL DAAC) website with an original spatial
resolution of 0.1° x 0.1° and resampled to 0.25° X 0.25° by the nearest-neighbor method. We considered four
major climate classes—tropical, arid, temperate, and continental—to investigate the RZSM trends and its
influencing factors.

3. Methodology

To mask out the water bodies, we used the Noah Land/Sea mask data set, which is based on the MOD44W
(MODIS) land/sea mask data set [Carroll et al., 2009].

3.1. Exponential Filter

The exponential filter is a simple two-layer water-balance model proposed by Wagner et al. [1999] to relate
near-surface SM estimates to profile SM content (details about the method is provided in the supporting
information). Many previous studies utilized the exponential filter to estimate RZSM in different regions of
the world using various satellite platforms [Wagner et al., 1999; Albergel et al., 2009; Brocca et al., 2010; Ford
et al, 2014] and found it a competent method when only surface SM estimates are given. This study utilized
the recursive form of the exponential filter [Albergel et al., 2008] for estimating RZSM from the ESA CCI
combined product. It is an easy and computationally efficient method to implement [Ford et al., 2014].

Wi = SWi(n—1) -+ Kn (M5 (tn)-SWipn(n—1)) M

where subscripts m stand for “modeled” and n denotes the time step. SWly, _ 1) is the predicted RZSM
estimate at t,, _ 1, ms(t,) is the surface SM estimate at t,, and the gain K at time t, is given by
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Kn—1

T @
Kn—1 +e_( 7 1)
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where T is the characteristic time length in days and considered as substitute for all the processes that affect
the temporal dynamics of SM in the subsurface, such as root zone depth, soil hydraulic properties, evapora-
tion, runoff, and vertical heterogeneity of soil properties [Albergel et al., 2008]. Wagner et al. [1999] evaluated
the performance of the exponential filter and concluded that any T value between 15 and 30 days gives a
satisfactory estimation, even though there may exist T values that perform better. Albergel et al. [2008] used
an optimized T value (Top:) concept for each site, based on the highest Nash-Sutcliffe score. However, they
found that the results of a single T, for all stations does not make much difference. They further concluded
that there is no clear linkage between T, and soil and climate properties; however, it does depend upon the
depth of the root zone. Ford et al. [2014] found that under the assumption of homogeneous soil properties
throughout the soil column, the exponential filter provides acceptable estimates of RZSM from satellite
near-surface SM. Based on the above literature, it can be noted that T value is mostly affected by the depth
of root zone, which depends upon the vegetation type [Y. Yang et al., 2016]. However, satellites typically
involve in viewing heterogeneous pixels that have different vegetation types in a pixel. Therefore, we used
a constant root zone depth of 100 cm, which is commonly used [Paris Anguela et al., 2008; Reichle et al.,
2015]. Wagner et al. [1999] showed that the best estimates for the layer 0-100 cm can be obtained with
T=20 days, which we have chosen in this study. Moreover, it was found that the RZSM obtained by exponen-
tial filter does not duplicate the SSM; however, it shows a clear difference in linear trend lines (Figures S1 and
S2 in the supporting information).

3.2. Anomaly Calculations

Anomalies were calculated to avoid the seasonal effects that artificially enhance the R between two vari-
ables [Scipal et al., 2005, 2008]. The anomaly time series (ANO) was calculated by removing the mean sea-
sonality (SM) from the original yearly mean time series (ORI), i.e., calculating the overall mean of all the
years having 7 months of data (April, May, June, July, August, September, and October), and subtracting it
from the original time series of each year. Seasonal anomalies were calculated using the following formula:

2014
. SMyear
S/V’year = YR:1981N— (3)
ANoyear = ORlyear - Wyear (4)

3.3. Trend Analysis

Monotonic trends in all the data sets were calculated using the nonparametric Mann-Kendall test [Kendall,
1938; Mann 1945; Hirsch and Slack, 1984]. The null hypothesis (Ho) of the test assumed that there is no signifi-
cant trend in the examined time series (i.e., the data are independent and randomly ordered). This hypothesis
is rejected if the P value of the test statistic is less than the significance level 0.05 [Dorigo et al., 2012; Albergel
etal, 2013].

First, the statistical significance of the trends was tested by computing test statistics (S) from all the subse-
quent data values:

n-1 n
S=>"> sgn(x; —x) (5)

=1 j=it
where

+1,(x—x;) >0
sgn(x; —x;) =4 0, (x; —x;) =0 (6)

—1,(Xj—X,') <0

1

var(s) = - n(nf1)(2n+5)7;tp(tpf1)(2tp) +5 @)
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-§:i<w5>o
var(S)
z={0 JifS=0 ®)
S+1

—~ L _ifS<0
var(S)

The statistic Z, when compared with the tolerable probability, administers the presence or absence of a
statistically significant trend. In this study, a tolerable probability of 0.05 was used.

Besides finding the statistical significance of trend, the slope of the trend was estimated by a simple nonpara-
metric procedure developed by Sen [1968]. Sen’s slope estimator is the median of the slopes, Q;;, calculated
from each pair of x; and x; as follows:

Xi — Xj
Qi‘,‘:¥,t,'>tj (9)
t—1

where x; and x; are the measurements at times t; and t;. If there are n values of x in the time series, we get as
many as n(n — 1)/2 slope estimates for Q;; (t; > t)).

3.4. Correlation Analysis

To quantify the strength and direction of the linear relationship between RZSM-P and RZSM-Ty,,, the Pearson
product-moment R [Pearson, 1895] were computed between deseasonalized time series of variables. It is the
covariance of the two variables divided by the product of their standard deviations,

ol (i =X\ (yi—Y
r_”_1z( Sx )< Sy ) 1o

i=1

where x;and y; are the ith values and Xy, and S,, S, are the means and standard deviations of variables xand y,
respectively. Significance testing was performed with the two-tailed Student’s t test, for which a P value of
0.05 was selected.

4. Results and Discussion
4.1. Data Gaps and Fraction of Spatial Coverage

Previous research has shown that the performance of the ESA CCl SM is not reliable with large data gaps
[Dorigo et al., 2015; Loew et al., 2013]. It makes the results of trend analysis erroneous [Khalig et al., 2009;
Renard et al., 2008]. Additionally, few months do not cover all climate zones in East Asia for the entire
study period (1982-2014), which will make the analysis biased; thus, we omit the months that have frac-
tional coverage less than 0.7, on average, to enable a reliable comparison of the RZSM trend in each
climate region. Moreover, the Tibetan Plateau has missing data in almost all the months except a few;
hence, this area was also excluded in the study. The fraction of spatial coverage is determined by calcu-
lating the ratio between the number of grid cells reporting a valid value in each month and the number
of grid cells that reported a valid value in the month of maximum coverage during the entire period
[McNally et al., 2016]. Figure 2 shows the boxplots of spatial fraction coverage of the available data on
a monthly time scale for 1982-2014 over East Asia. It is observed that the spatial coverage in January,
February, March, November, and December has many missing data even at monthly time scale, with a
median value less than 0.7. However, the rest of the months have spatial fraction coverage greater than
0.7, approximating 0.9. Based on this outcome, further analysis in this study was carried out only for the
months of April to October.

Moreover, the reliability of the ESA CCl RZSM (0-100 cm) in different climate classes was evaluated by
comparing them with the average SM of the 0-100 cm layer from ERA-Interim at a monthly time scale. On
average, R values are 0.471, 0.707, 0.259, and 0.497 in the tropical, arid, temperate, and continental climate
regions, respectively. Biases are, on average, 0.0289 m3m?3, 0.0585 m®*m?, 0.0193 m®m?, and 0.0655 m*m?;
RMSE values, on average, are 0.0256 m*m?, 0.0214 m®m?3, 0.0210 m®m?, and 0.0193 m®m?3, respectively
(Table S1 in the supporting information).
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Figure 2. ESA CClI SM monthly data coverage over East Asia in different months of 1982-2014.

4.2. Changes in Skin Temperature and Precipitation Trends

Figure 3 shows the time series, calculated by taking the spatial mean, of Ty, for the four major climate classes
in East Asia. From 1982 to 2014, the average annual T, significantly increases in East Asia at the 0.05 o level.
Here we divided the entire study period into two halves, 1982-2000 and 2001-2014, to evaluate the temporal
variations of RZSM, AET, Ty.n, and P. Generally, a change in the sign of the Ty, trend can be seen in the
tropical and arid regions. In tropical regions, the trend is downward in the first half of the study period but
upward in the second half (Figure 3a), whereas in arid regions, upward in the first half and downward in
the second half of the study period (Figure 3b). The pattern of the Ty, trend in both temperate and conti-
nental climates are increasing in both halves of the study periods (Figures 3c and 3d). However, in the con-
tinental climate regions, T, increases with a steep slope in the first half and increases with a mild slope in
the second half of the study period (Figure 3d). Moreover, in Figure 3, the annual fluctuations in Tg;, anoma-
lies in all climatic subregions are very high. Additionally, it is worth noting that the anomalies of T, in arid,
temperate, and continental regions are negative in the first half of the study period and positive in the second
half, which infers that under the global warming, Ty, is rising in recent years.
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Figure 3. Anomaly time series of skin temperature for 1982-2014 in different climate class of East Asia (a) tropical, (b) arid,
(c) temperate, and (d) continental.
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Figure 4. Anomaly time series of precipitation for 1982-2014 in different climate class of East Asia (a) tropical, (b) arid, (c)
temperate, and (d) continental.

Similarly, Figure 4 shows the anomaly time series of spatially integrated P for the four major climate classes
in East Asia. Generally, annual P increases in East Asia for 1982-2014, but this is not significant at the 0.05 a
level. Specifically, in both the tropical and continental climate regions of East Asia, P decreases in the first
half of study period, whereas it increases in the second half. The overall trend in tropical regions is
increasing, whereas it is decreasing in continental regions (Figures 4a and 4d). In arid climate regions, P
increases throughout the study period. Finally, in temperate climate regions, overall, a decreasing trend
of P can be seen, despite increases in the first half of the study period and decreases in the second half
of the study period. Less rainfall in temperate climate regions and high annual rainfall in tropical climate
regions align with the Intergovernmental Panel on Climate Change report [Intergovernmental Panel on
Climate Change, 2007]. Moreover, Figure 4 also shows high annual fluctuations of P anomalies in
all subregions.

4.3, Spatial Pattern of Trends and Correlations of P, T, RZSM, and AET in East Asia

R values were employed to detect linkages of P, AET, and T, with the RZSM in different climate regions.
Generally, the R of RZSM is positive with P and negative with T, in all climate classes (Figure 5), except
for temperate regions, where both P and Ty, have a weak positive R with RZSM (Table 1).

Figure 6 shows the spatial distribution of the linear trends of yearly mean P (mm yr™ "), Tyn (K yr '), RZSM
(m*>m™3 yr™), and AET (mm yr~") for 1982-2014. Table 2 shows that 53% of the land area in East Asia has
a drying trend and 47% has a wetting trend of RZSM (Figure 6a), however, 36% of the total trends were found
significant at the 0.05 a level. The most prominent drying is found in southern Russia near Lake Baikal, eastern
Kazakhstan, southwestern Mongolia, and the West Bengal and Bihar districts of India. The drying over these
regions is consistent with the warming trend of the T, (Figure 6c). In general, the results of our study are
consistent with previous literature [Dorigo et al., 2012; Greve et al., 2014; Cheng et al., 2015] that found
significant drying trends for SM over East Asia. Conversely, notable wetting trends can be seen in central
and southern China, central and northeast India, and northern Mongolia. The wetting trend in central
China might be ascribed by the heavy irrigation application in these regions. Toward the south, Jianxi,
Hubei, and Hunan provinces have major irrigated fields, whereas in the north, the Huang-Huai-Hai plain is
located, which is the most intensively irrigated region of the world [Siebert et al., 2005; Shi et al., 2014; Qiu
etal,2016; B. Yang et al., 2016]. This finding is also verified by comparing the trends of the ESA CCI RZSM with
the ERA-interim RZSM, which does not include irrigation modules, and shows increasing and decreasing
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a) Spatial distribution of correlation pattern between RZSM and P b) Spatial distribution of correlation pattern between RZSM and T,
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Figure 5. Pixel wise spatial distribution of correlation coefficient for 33 year (1982-2014) mean values between (a) RZSM-P
and (b) RZSM-TSkin.

trends, respectively (Figure S3). Hence, it can be assumed that human attempts to improve crop production
could significantly affect the regional- to global-scale climate conditions not only in short-term but also in
long-term periods.

Figure 6b shows the spatial distribution of the MSWEP P trend over East Asia. Overall, 55% of the pixels
showed increasing trends and 15% of the total trends are significant at 0.05 « level (Table 2). Generally, P
shows an increasing trend in the arid regions of China, Korean Peninsula, coastal region of northern China
and India, and East Kazakhstan. Conversely, a drying trend can be observed in the central Mongolia, northern
China extending to Russian Far East. Similar spatial trend patterns in East Asia was also found by Kim and Park
[2016]. However, a notable decreasing trend was found over the northeastern states of India: Assam,
Meghalaya, and Nagaland. A potential reason for the drying trend of P in these regions can be related to
the long-term warming of the tropical oceans, which possibly decrease the land-sea thermal gradient and
the amount of moisture transported from the Bay of Bengal [Roxy et al., 2015; Tan et al., 2016; Latif et al.,
2016]. These northeastern states of India are in the temperate climate regions, where the primary mode of
P is frontal depressions. These frontal depression phenomena are diminished due to the lessened moisture
transport from the Bay of Bengal, Indian Ocean. The decrease in P over northeast India is also consistent with
the previous literature [Deka et al., 2013; Das et al., 2014; Mishra and Liu, 2014].

Figure 6¢ shows the spatial distribution of the ERA-Interim Ty, trend over East Asia. Overall, 97% of the pixels
showed an increasing trend and 60% of the total trends are significant at 0.05 « level (Table 2). The most pro-
minent warming trend is found north of 40°N and in the central China. The warming trend over the northern
part of the East Asia is consistent with the previous literature [Huang et al., 2014; Ji et al., 2014; Cheng et al.,
2015]. The increase in temperature may be primarily caused by the high rate of greenhouse gases produced
over the mainland of East Asia [Tett et al., 1999; Kang et al., 2015]. This perception can be supported by the
results of studies concluding that China is one of the world’s largest contributor to the greenhouse gases
[Piao et al, 2010; Kan, 2011] having a concentration of 10,975.50 MtCO,e for the year 2012 (Climate
Analysis Indicators Tool (CAIT) Version 2.0, World Resources Institute (Washington, DC: World Resources
Institute, 2014), Retrieved 2014-06-27, http://cait.wri.org/).

The GLEAM AET shows an overall increasing trend in 72% of the pixels, while 37% of the total trends were
significant, out of which 86% was increasing (Table 2). The most prominent increasing trend of ET was found
on the southern coast of China and in the deserts of Kazakhstan and Rajasthan, India (Figure 6d). The increas-
ing trend of ET in these regions may be caused by the increasing trend of T, except in some arid regions of
China, where an afforestation program was initiated by the Chinese government for environmental restora-
tion [Wang et al., 2007; Cao et al., 2011]. Conversely, the most notable decreasing trend was found in most of
Mongolia, northern China, and Burma, which may be attributed to the decreasing trend of P in these areas.

Table 1. Summary of Correlation Coefficient in Different Climate Classes

Tropical Arid Temperate Continental
RZSM-P 0.432 0.541 0.201 0.304
RZSM-Tin —0.372 —0.591 0.204 —0.330
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Figure 6. The spatial distribution of linear trend for mean (a) root zone soil moisture, (b) precipitation, (c) skin temperature,
and (d) evapotranspiration from 1982 to 2014 (the white color shows ocean and Tibetan Plateau).

4.4. Integrated Effect of Hydrothermal Conditions on RZSM Trends in Different Climate Class

Overall, a decreasing trend of the RZSM was found in East Asia, which is not significant at an o level of 0.05 but
is significant at the 0.1. Moreover, an insignificant increasing trend of P and a significant increasing trend of
Tskin and ET were found in East Asia.

Figure 7 shows the anomaly time series of RZSM in different climate classes. Figure 7a shows that in the tropical
climate regions of East Asia, RZSM has a significant increasing trend. Moreover, high interannual variability can
also be observed, with 1987 as the driest year and 1999 and 2001 as the wettest years. Tropical regions are char-
acterized by hot average temperatures all year round, dense vegetation, and high monthly P, typically not less
than 60 mm a month, with annual P greater than 2000 mm. The increasing trend of RZSM is accompanied by
increasing trends of T, (Figure 3a), P (Figure 4a), and AET (Figure 8a). The increasing trend of RZSM and AET in
humid and densely vegetated regions are consistent with the finding of Feng [2016], who ascribed this by the
fact that vegetation increases the holding capacity of water and infiltration, hence reducing the draining of
water by the runoff. Moreover, significant positive R between RZSM and P is supplemented by the significant
negative R between RZSM and T,. These patterns of trends and R values can be explained by the convective P
in tropical regions, initiated primarily by the regional SM [Guillod et al., 2015; Taylor, 2015], where an increase in
P is associated with a warming climate that strengthens the hydrological cycle [Held and Soden, 2006].
Furthermore, previous researchers also found a similar relationship in tropical climate regions, stating the
“warmer-gets-wetter” paradigm [Chadwick et al., 2013; Huang et al., 2013, Tan et al., 2015].

In the arid regions of East Asia, the anomaly time series of RZSM (Figure 7b) shows an insignificant decreasing
trend at the 0.05 a level. Specifically, a sign change of the linear trend line can be seen in the two halves of the

Table 2. Summary of the Pixel-Wise Distribution of Total and Significant, Positive, and Negative Trends of RZSM, P, T¢kin,
and AET

Total Trends Significant Trends
Positive Negative % of Total Positive Negative
RZSM 47 53 36 44 56
P 55 45 15 68 32
Tskin 97 3 61 97 3
AET 72 28 37 86 14
ZOHAIB ET AL. TREND OF ROOT ZONE SOIL MOISTURE 1
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Figure 7. Anomaly time series of root zone soil moisture for 1982-2014 in different climate class of East Asia (a) tropical, (b)
arid, (c) temperate, and (d) continental.

study period. However, the overall linear trend is decreasing for the whole study period, which might be
caused by the negative anomalies in 2002-2010, a relatively drier period. Both P and Ty, strongly correlate
with RZSM in the arid regions (Figure 5) and have increasing trends (Figures 3b and 4b). The increasing trend
of P and decreasing trend of RZSM are accompanied by the increasing trend of Ty, (Figure 3b) and AET
(Figure 8b) over the arid regions. This decreasing pattern of RZSM despite increasing P might be explained
by the concentrated rainfall during the summer season, almost 80% in May-September, when the soil is
comparatively drier [Chen et al., 2006]. The high temperatures over arid regions cause surface water to
evaporate prior to infiltrating into the root zone [Small et al., 1999; Pal et al., 2000]. The other potential reason
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Figure 8. Anomaly time series of evapotranspiration for 1982-2014 in different climate class of East Asia (a) tropical, (b)
arid, (c) temperate, and (d) continental.
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Table 3. Summary of Trend Patterns of Hydrometeorological Variables: P, Tskin, RZSM, and AET, in Different Climate Regions

P

Tskin

RZSM

AET

Tropical
Arid
Temperate
Continental

East Asia

Increasing(0.092)
(not significant)
Increasing(0.010)
(not significant)

Decreasing(—0.0587)

(not significant)

Decreasing(—0.0046)

(not significant)
Increasing(0.00089)
(not significant)

Increasing(0.0021)
(not significant)
Increasing(0.0255)
(significant)
Increasing(0.0148)
(significant)
Increasing(0.0296)
(significant)
Increasing(0.0217)
(significant)

Increasing(0.00083)
(significant)
Decreasing(—0.00005)
(not significant)
Increasing(0.00090)
(significant)
Decreasing(—0.00041)
(significant)
Decreasing(—0.00057)
(significant at 0.1)

Increasing(0.010)
(not significant)
Increasing(0.0496)
(not significant)
Increasing(0.1182)
(significant)
Increasing(0.0673)
(significant)
Increasing(0.0824)
(significant)

might be the fast drainage of P because arid and dry regions mostly comprise sandy soil and cracks in the soil
that allow P to bypass the root zone quickly [Hillel, 1998; Seneviratne et al., 2010; Liu et al., 2010]. Moreover, SM
does not depend only on P but rather mostly on the surface water balance of P, AET, and runoff [B. Su et al.,
2016]. Hence, the afforestation practice under the “ecology restoration program” in the water-limited, arid
areas of China may also cause a decreasing trend of the RZSM by encouraging the ET and, thus, causing dry-
ing of the soils [Cao et al., 2011]. Similarly, Feng [2016] also demonstrated that increase in vegetation in arid
and low vegetation area can aggravate the drying of soil. Further, McColl et al. [2017] figured out that the low
RZSM in the arid regions is not only dependent upon P but is also caused by the greater portioning of the
water cycle by the SSM storage.

In the temperate climate regions of East Asia, the RZSM anomaly time series (Figure 7c) shows a significant
increasing trend at the 0.05 a level. A high interannual variability can be observed along a sign change of
the linear trend in both halves of the study period. Moreover, the linear R of RZSM with P (0.201) and Tgn
(0.204) are both weak and positive (Table 1). Interestingly, RZSM is increasing, although P (Figure 4c) is
decreasing, and T, (Figure 3c) and AET (Figure 8c) are increasing in the temperate regions. This climate
region mostly comprises of the southern and central China, which are the most intensively irrigated areas
that might have cause this abnormal pattern of the R and RZSM trend. Irrigation reduces soil albedo,
increases soil heat capacity, alters local SM content, and affects the water/energy budget by transforming
the ET regime from SM-limited to energy-limited.

In the continental climate regions of East Asia, the RZSM anomaly time series (Figure 7d) shows a significant
decreasing trend at the 0.05 a level. Despite the increasing trend of RZSM in both halves of the study period,
the overall trend is decreasing because the anomalies are mostly negative in the second half. Moreover, the R
of RZSM is positive with P (0.304) and negative with T, (—0.330). These results suggest that the trend of
RZSM in continental regions depends on both Ty, and P. The decreasing trend of the RZSM is consistent with
the decreasing trend of P and increasing trend of Ty;,. This finding is further supplemented by the increasing
trend of AET in the continental regions (Figure 8d). Liu et al. [2016] also found an increasing trend of AET in
northern China due to the increase in vegetation greenness by the forest plantations for environmental
restoration [Wang et al., 2007; Cao et al., 2011]. The forest plantation projects of China in water-limited areas
have a negative impact on environmental restoration [Cao et al., 2011]. Generally, it was found that RZSM, P,
Tskine and AET all have different signs and magnitudes of trends in each climate region (Table 3).

5. Conclusions

In this study, we analyzed the spatiotemporal trend and variability of RZSM, as derived from the satellite-
based SSM retrievals provided by the ESA CCl, in East Asia for 1982-2014. Moreover, we also compared the
RZSM trend with the trends of three hydrometeorological variables—P, Ty, and AET—in different climate
classes to investigate the major influencing factors in each climate region. Generally, RZSM has a decreasing
trend accompanied by a slightly increasing trend of P and a sharply increasing trend of AET and T, in East
Asia (Table 3). However, the intriguing results are that the direction and magnitude of the trends are hetero-
geneous across different climate regions. Moreover, the influencing factors such as P and Ty, have different
effects on the trend of RZSM in each climate region. Specifically, in the tropical climate regions, the trend of
RZSM is increasing along with increasing trends of P, T, and AET, substantiating the intensified
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hydrological cycle and the paradigm “warmer gets wetter” [Taylor, 2015; Feng and Zhang, 2015]. Interestingly,
in arid climate regions, RZSM trend decreases despite increasing P. Potential reasons might be the rapid loss
of surface water by instant evaporation due to high temperature and the quick drainage of rainfall through
sandy soils or cracks in arid regions [Hillel, 1998; Seneviratne et al., 2010; Liu et al., 2010]. In temperate climate
regions, RZSM increases regardless of decreasing P and increasing AET and T,. This abnormal relationship
among RZSM, P, and T, was thought to be induced by the human interference to the hydrological cycle by
intensive irrigation. In regions with a continental climate, decreasing RZSM trend was triggered by the
decreasing P and increasing Ty, along with increasing trend of AET. This could be ascribed by the afforesta-
tion in water-limited regions of northern China under global warming. The findings of this study might be
important in developing and improving climate models to study the dynamics of climate systems and
predicting natural disasters, such as agricultural drought, dust, and landslides. The ESA CCl SM merged
product (v3.2) used in this study is an improved version because the individual products were merged based
on a relatively modern technique, the weighted signal-to-noise-ratio. However, in future, a better under-
standing of the physical processes, by the field surveys, will improve the retrieval algorithms of satellite
and the parameterization of the model data sets; hence, more reliable results could be expected.
Moreover, in future, incorporation of the most recently launched missions such as Sentinel-1 and 2, and
Soil Moisture Active Passive’s level-4 SM, yielding RZSM data sets, into the ESA CCl merged SM product will
give us novel insights into the investigation of long-term RZSM trends at a global scale.
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