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For several decades, satellite-based microwave sensors have provided valuable soil moisture monitoring in various surface
conditions. We have first developed a modeled aerosol optical depth (AOD) dataset by utilizing Soil Moisture and Ocean
Salinity (SMOS), Advanced Microwave Scanning Radiometer 2 (AMSR2), and the Global Land Data Assimilation System
(GLDAS) soil moisture datasets in order to estimate dust outbreaks over desert areas of East Asia. Moderate Resolution Imaging
Spectroradiometer- (MODIS-) based AOD products were used as reference datasets to validate the modeled AOD (MA). The
SMOS-based MA (SMOS-MA) dataset showed good correspondence with observed AOD (R-value: 0.56) compared to AMSR2-
and GLDAS-based MA datasets, and it overestimated AOD compared to observed AOD. The AMSR2-based MA dataset was found
to underestimate AOD, and it showed a relatively low R-value (0.35) with respect to observed AOD. Furthermore, SMOS-MA
products were able to simulate the short-term AOD trends, having a high R-value (0.65). The results of this study may allow us to
acknowledge the utilization of microwave-based soil moisture datasets for investigation of near-real time dust outbreak predictions

and short-term dust outbreak trend analysis.

1. Introduction

Mineral dust plays a critical role in climate forcing and in
the atmospheric radiation budget by scattering, absorbing,
and reemitting longwave and shortwave radiation [1-4].
Mineral dust modifies the microphysical and optical prop-
erties of clouds, thereby indirectly affecting climate [5, 6].
It also supplies nutrient transfer to oceans and terrestrial
ecosystems and neutralizes acid precipitation [7-9]. How-
ever, dust storms can also harm human lives by negatively
affecting public health, the solar economy, agriculture, and
transportation [10, 11]. The Korean peninsula and Japan are
located to the east of China and are annually damaged by the
Asian dust storms, called “Hwangsa” in Korean and “Kosa”
in Japanese. These dust storms are mostly generated from
deserts in Northern China, such as the Taklimakan and Gobi

Deserts. The dust then blows into neighboring nations on the
westerlies during the spring season from March to May [12].
Hwangsa can cause severe cardiovascular and respiratory
diseases [13, 14]. Moreover, the frequency of dust events has
been steadily increasing annually in Eastern Asia [15, 16].
Therefore, the ability to identify dust sources and to detect
dust events is essential to predict dust outbreaks precisely in
response to climate change and to plan prevention measures
against dust disasters.

The mechanism through which dust is emitted should be
further clarified in order to quantitatively understand and
predict dust outbreaks. Many factors determine the mobi-
lization of sand in dust source regions, including erosivity
factors (i.e., strong wind speed) and erodibility factors (e.g.,
soil properties, soil moisture, and type of land cover). Many
of the mineral dust source regions in East Asia are located in
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large bare deserts, and therefore, the surface wind speed and
soil moisture (SM) are considered to be the primary factors
that control interannual variation in the frequency of dust
outbreaks [15, 17]. Various studies were previously conducted
using wind tunnel experiments in laboratories or in fields to
examine the effect of SM on wind erosion [18-23]. However,
most of these studies were not able to fully reflect large-
scale dust outbreak phenomena under natural conditions.
In order to overcome this challenge, the synergetic use of
remote sensing datasets and global assimilated datasets is
invaluable. This enables global-scale dust emission studies
to be conducted beyond observatory-scale dust research [24,
25].

In recent years, many efforts have been made to identify
dust source regions and to detect dust events based on
satellite remote sensing techniques [10, 26-34]. However,
the previous studies hardly explain the conditions in the
dust source regions that produce dust outbreaks because
most analyses are based on data obtained from visible
and infrared sensed datasets which have limitations under
cloudy and dusty weather conditions. Thus, this study
investigates dust outbreak phenomena using microwave-
based satellite remote sensing techniques to estimate the
surface conditions (i.e., surface SM) when dust events
occur. Several studies have investigated surface SM from
satellite-based microwave instruments [35-39]. Satellite-
based SM measurements were required during the initial
states of weather forecasting and climate modeling over
vast scales [40-43]. Recently, satellite missions specializing
in global SM measurements have been conducted. The
National Aeronautics and Space Administration’s (NASA)
Delta II rocket was launched in January 2015 carrying the
Soil Moisture Active Passive (SMAP) to monitor SM and
to detect the frozen or thawed state of soils [39]. Many
other promising satellites have been launched to acquire
global SM contents, such as the Advanced Scatterometer
(ASCAT), Advanced Microwave Scanning Radiometer 2
(AMSR2), and Fengyun [40-48]. Of these, certain satel-
lites have shown better performance in determining the
SM products in specific regions because of their specific
characteristics, such as the sensor type (e.g., active and
passive), platform overpass time, band frequency, polariza-
tion, retrieval algorithm, and calibration systems [42, 49,
50].

The Soil Moisture and Ocean Salinity (SMOS) was
launched by the European Space Agency (ESA) and the
Centre National d’Etudes Spatiales (CNES) of France in
November 2009 as the second Earth Explorer opportunity
mission [36, 38]. As the name implies, SMOS has been
particularly designed to provide global SM observations
using the L-band, an optimal wavelength for retrieving SM
from space [36, 38]. In particular, SMOS-derived SM contents
have proven to be advantageous in desert areas because the
L-band signal exhibits a distinct behavior over extremely
dry surface conditions [42, 50, 51]; as such, it is hardly
influenced by polluted atmospheric conditions [36]. Hence,
SMOS measurements have the potential for use in mineral
dust research over desert regions. However, no such research
has been conducted to date.
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The AMSR2, a follow-up microwave sensor to the
AMSR for Earth Observing System (AMSR-E), is a passive
microwave instrument that has been providing global near-
surface SM data since its launch in May 2012. The AMSR2
SM product has been widely validated by many studies [41,
52, 53].

The present study uses SMOS- and AMSR2-derived SM
measurements and the Global Land Assimilation Dataset
System (GLDAS) to investigate dust outbreaks over the
desert regions of East Asia. The relationships among the SM,
wind speed, and aerosol optical depth (AOD) are utilized to
estimate dust outbreak phenomena. The main objectives of
this study are (1) to estimate the modeled AOD (hereafter
MA) datasets based on different SM and GLDAS wind speed
datasets, (2) to validate MAs with the observed MODIS-AOD
products and short-term trend analysis, and (3) to analyze
the spatial distribution of MA products and observed AOD
datasets in different seasons. To the best of our knowledge,
this study is the first to use SMOS and AMSR2 products to
predict dust outbreaks at the global-scale.

2. Datasets and Study Areas

In this study, the erosivity factor (i.e., wind speed), erodibility
factors (i.e., soil properties, sand fractions, and SM), surface
conditions (i.e., surface temperature), and precipitation were
considered in order to analyze the effect of SM on dust
outbreaks over deserts in East Asia.

The US Department of Agriculture (USDA) topsoil tex-
ture classification was used with the Harmonized World
Soil Database (HWSD) to define the desert regions and to
obtain information on the land and the atmosphere over
the land. The SM contents were retrieved from SMOS and
AMSR2; SM, wind speed (WS), surface temperature, and
precipitation datasets from GLDAS were utilized for gener-
ating MA products. Atmospheric properties were obtained
using the Moderate Resolution Imaging Spectroradiometer
(MODIS) sensors on the Aqua satellite (Refer to the following
sections for further details regarding those datasets). All of
the datasets were gathered during 2015 and were resampled
to a spatial resolution of 0.25° x 0.25°.

2.1. Land Cover and Land Properties Dataset. Land cover and
land properties datasets are used in this study to identify dust
source regions and investigate dust outbreak conditions. The
land cover dataset is obtained from Biosphere Atmosphere
Transfer Scheme (BATS). BATS landform categories were
created by Dickinson et al. [54] and modified by Olson
[55] to support land-atmosphere modeling. Similarly, the
land properties dataset is obtained from the Harmonized
World Soil Database (HWSD), which is a raster database that
contains more than 16,000 different soil mapping units at
a spatial resolution of 1km x 1km. This database combines
regional and national updates of soil information worldwide.
It consists of 221 million grid cells and is contained within
the 1:5,000,000 scale FAO-UNESCO Soil Map of the World.
In particular, the HWSD has been applied in dust research to
identify dust sources and investigate dust outbreak conditions
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FIGURE 1: The East Asia sand fractions were retrieved according to the Harmonized World Soil Database (HWSD). All of the identified desert
regions were recognized as the most famous dust sources around the world. Well-known desert regions (#1 to #6) are classified as sand by the

USDA classification and exhibit a sand fraction that is greater than 80%.

as well as in several other research fields [56-59]. The study
area was masked based on the BATS desert land cover class
and an HWSD sand fraction greater than 80% to define the
desert regions.

2.2. Study Areas. Figure 1 shows the spatial description of
the study areas in terms of the sand fraction. Boxes 1 to
7 show the famous desert areas that have been regarded
as the major mineral dust source regions in East Asia [12,
15, 60-62]. In this study, these bare desert areas have been
classified using HWSD sand fractions greater than 80% and
desert regions from the BATS model. Through this masking
process, all major deserts in East Asia except the Gobi Desert
were extracted. About 1,012,500 km? (1,620 pixels) have been
identified as desert areas, and the average sand, clay, and silt
fractions were 87.6, 5.7, and 7.0% respectively. In these regions,
especially during spring, frequent dust outbreaks result in
Asian dust storms in neighboring countries [63, 64].

2.3. SMOS for Soil Moisture Contents. SMOS provides global
near-surface SM (SSM) and covers the globe in three days,
with a ground resolution ranging from 27 to 55km (the
average spatial resolution is 43km), and its mission is to
retrieve SSM at an accuracy of 0.04 m’/m” at a depth of 3 to
5cm. SMOS has been particularly designed to be on a sun-
synchronous orbit, ascending in the morning at 0600 local
time (LT) and descending at 1800 LT [36-38]. The SMOS
instrument is an L-band (1.41 GHz, A = 21 cm) 2D interferom-
eter radiometer that is considered to have the most suitable
frequency for SM retrieval. In particular, the L-band fre-
quency offers the added advantage of taking measurements in
all weather conditions [36, 65]. In addition, radiometers are
expected to perform better than scatterometers in dry areas
[49, 50, 66, 67]. However, the L-band is negatively impacted

by radio frequency interference (RFI) from illegal emissions
in the protected passive band and unwanted emissions from
active services operating in neighboring bands. Thus, several
studies have been conducted since the SMOS mission began
to mitigate the effects of RFI contamination [68]. The daily
SSM products (L3) that were considered in this study were
provided by the Centre Aval de Traitement des Données
(CATDS Centre) with a spatial sampling of 25km x 25km
in NetCDF format. We calculated the preceding one- to
five-day composite SM products (ascending). This past-
compositing SM process is considered because the antecedent
moisture conditions that are detected by the SMOS may have
the capability to predict dust outbreaks in the near future.
Additionally, the FL_LRAIN science flag is used for filtering
the heavy rainfall events.

2.4. AMSR2 for Soil Moisture Contents. The Japan Aerospace
Exploration Agency (JAXA), with the cooperation of NASA,
launched AMSR2 sensor on board the Global Change Obser-
vation Mission 1-Water (GCOM-WT1) platform in May 2012.
It is the successor to JAXA's AMSR-E on board NASAs Aqua
satellite. It utilizes microwave frequencies at Cl- (6.9 GHz),
C2- (7.3 GHz), and X- (10.65 GHz) bands for SM measure-
ments and provides a 1,450 km swath width and 25 km spatial
resolution associated with a revisit time of one to two days.
The AMSR2 crosses the equator at 01:30 LT and 13:30 LT
for descending and ascending orbits, respectively. Primar-
ily, two algorithms are used to derive AMSR2-based SM
products from measured brightness temperature: JAXA and
NASA-VUA (VU University Amsterdam) Land Parameter
Retrieval Model (LPRM) products [46]. Originally, both of
these algorithms utilized a simple radiative transfer model
[69]. Moreover, LPRM provides AMSR2 SM retrievals for
both C- and X-band microwave frequencies, whereas the



JAXA algorithm provides SM retrievals only for the X-
band. The LPRM algorithm, however, is expected to be
more accurate, which enables the retrievals of the SM and
vegetation optical depth, simultaneously, from horizontal
and vertical polarized Tj, measurements [70]. The AMSR2
SM products used in this study were cross-validated with
the AMSR-E slow rotation dataset (http://global.jaxa.jp/
press/2015/12/20151207 _amsr-e.html). In this study, we only
utilized the LPRM X-band SM dataset for conciseness,
because SM from the Cl- and C2-bands showed almost the
same temporal patterns as the SM from the X-band over the
study area.

2.5. MODIS for Atmosphere Products. The dust outbreak
states that are characterized by the AOD and Angstrom
exponent (AE) values were used in this study and were
collected by the MODIS platform aboard NASAs Earth
Observing System- (EOS-) Terra and Aqua polar orbiter
satellites. Aqua was launched on May 4, 2002, into a sun-
synchronous orbit with an ascending orbit at 1330 LT and a
descending orbit at 0130 LT. The Naval Research Laboratory
(NRL) receives the global digital data from Aqua in near-real
time. The MODIS data are distributed by NASA's Goddard
Earth Sciences Data and Information Services Centre (GES
DISC) and are provided not only for the atmosphere but also
for the land, cryosphere, and oceans [71, 72].

The MODIS sensor has 36 narrow spectral bands and
measures in the 0.4-14.4 ym range. Specific channels, includ-
ing visible and infrared bands (e.g., bands 1, 2, 3, 4, 26, 31,
and 32), have been effectively used to detect mineral particles
[30, 32, 34]. In particular, deep blue products (deep blue uses
information from blue channels such as bands 3 and 8) are
generally used over bright land surfaces to detect mineral
dust. Deep blue was developed because the standard MODIS
aerosol LAND measurements could not be used to retrieve
data over bright surfaces, such as desert areas. For more
details on the deep blue algorithm, refer to Hsu et al. [33]. In
this study, the MYDO04_L2 Aqua deep blue AOD (hereafter,
MODIS-AOD) and AE datasets (550 nm) were employed
because these datasets have already been extensively validated
and have been successfully utilized in several studies [10, 25,
29, 30, 73, 74]. To ensure consistency in the analyses, the
MODIS-AOD products were upscaled to 0.25°.

2.6. GLDAS for Land Surface Products. GLDAS is a result
of datasets assimilated through cooperation of the National
Centres for Environmental Prediction (NCEP), NASA, the
National Oceanic and Atmosphere Administration (NOAA),
and the Goddard Space Flight Centre (GSFC). GLDAS is a
global-scale assimilation and modeling system that has been
developed using several satellite- and ground-based datasets
to provide the best estimation of the land surface conditions
in near-real time [75-77]. The analyses were based on the
GLDAS/Noah products because these provide various land
surface products with a high spatial resolution (0.25°) for
every 3-hour period. In this study, WS (m/s, height 0£10.0 m),
soil temperature (K, depth of 0-10.0 cm), and precipitation
(mm/3h) products were also obtained from GLDAS. These
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products have been extensively used in hydrometeorological
applications and validation studies [45, 78, 79].

3. Methodology

The SMOS, AMSR2, and MODIS overpass datasets are
available at local times, whereas the GLDAS/Noah products
are based on the Universal Time Coordinate (UTC) system.
It is of utmost importance that the UTC time of GLDAS
products must match the satellite local overpass time before
they are used for dust outbreak prediction. The SMOS
overpass time (ascending, 0600 LT) precedes the MODIS
and AMSR?2 overpass time (ascending, 1330 LT). AOD from
MODIS, which detects the dust outbreak state, is assumed
as the reference dataset in this study, whereas SMOS and
AMSR?2 which retrieved SM are used alongside the GLDAS
wind speed product to obtain the modeled AOD. The SMOS
overpasses the study areas from 2100 to 0100 UTC (0600
LT, ascending), and MODIS overpasses the study areas from
0430 to 0830 UTC (1330 LT, ascending). Theoretically, the
overpass times have a lag of about 7.5 h for SMOS-based AOD
prediction (Figure 2(a)). GLDAS products are available at 3-
hour intervals (0000, 0300, 0600, 0900, 1200, 1500, 1800, and
2100 UTC). Because the study area has five different time
zones, we matched the local time with the UTC for GLDAS
products. Considering the SMOS and AMSR2-based dust
model for zones 1 and 2, GLDAS products at 0000 UTC and
0300 UTC were used. For zones 3, 4, and 5, however, GLDAS
products at 2100 UTC of the previous day and 0600 UTC
of the same day were used (Figure 2(b)). Furthermore, fine
mode aerosols, such as transported dust and biomass burning
aerosols, were eliminated by setting an AE threshold greater
than 0.35 [10, 24, 80].

3.1. Developing Modeled AOD Products from Satellites-Based
SM and GLDAS Dataset. In this study, due to the shorter
period of data availability, we assumed that SMOS-based
and AMSR2-based SM retrievals have a negative relationship
with AOD, as previously proposed by Kim and Choi [24]
(Figure 3). Since AMSR2 and SMOS datasets are only avail-
able every four years and seven years, respectively, deriving
the same number of equations as in the study by Kim
and Choi [24] was not possible. Their study utilized an 11-
year dataset (containing 27261 million data points), which
provided sufficient information to make feasible assumptions
regarding the derived equations [24].

The WS magnitude is divided into 10 groups (3 to 12 m/s of
WS) at 1 m/s intervals, as in Kim and Choi [24]. Alternatively,
WS lower than 4m/s were classified as 3m/s, and WS
higher than 12 m/s were classified as 12 m/s. Figure 3 shows
the previous research finding that, generally, the averaged-
AOD values decreased exponentially according to the various
conditions of the WS and SM contents [24]. The exponential
decrease in the averaged-AOD patterns with the increase in
SM and decrease in WS is similar to trends presented in prior
studies. The physical meaning of the patterns in Figure 3 is
that a stronger WS (i.e., 6.5m/s) is required to generate dust
events under wet soil conditions because highly moistened
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FIGURE 2: A graphical representation of the methodology for matching GLDAS UTC zone based products with local overpass times of SMOS,

AMSR2, and MODIS in different time zones within the study area.

2.5
°
A Windspeed(ms’l)
N 3 4 5 6 7 8 9 10 112
210G 073 085 101 122 163 220 306 409 357 520
NG 006 007 008 009 011 013 015 017 014 016
\ooOSSE 003 001 004 003 003 005 007 009 007 048
N0 Rsquare 091 098 093 096 098 097 098 098 097 082
80 '\ RMSE 004 002 005 004 004 006 007 008 008 023
\ \
15 - - . = . -C, -
ek AOD eanis,w, = Ci - exp(=C, - VSM)
NEA N J
Y

Aerosol optical depth (550 nm)

0

56 7 8 910111213 141516 17 18 19 20 21 22 23 24 25 26

Volumetric soil moisture (%)

e 3.0ms o 8.0ms
@ 4.0ms @ 9.0ms
o 5.0ms ® 10.0ms
e 6.0ms ® 11.0ms
e 7.0ms ® 12.0ms

FIGURE 3: The relationship between average AOD and volumetric
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curves on the graph represent the strongest wind speed conditions.
Constants (C, and C,) and statistical information for each curve are
included [24].

sand particles have a more sturdy and cohesive strength
among soil particles [81, 82]. Thus, a stronger WS and drier
surface conditions have a greater propensity to produce dusty
atmospheric conditions. Furthermore, the AOD value may be
almost unaffected by the SM dynamics in a weaker WS or in

damped conditions (about 16% of the SM). Moreover, under
a stronger WS (higher than 6.0 m/s) and drier land surface
conditions (less than about 16% of the volumetric SM), SM
plays an important role in dust outbreak processes.

Considering the equation in Figure 3, the AOD values
could be estimated using the following equation with dif-
ferent constants for C,; and C, that are contingent on the
magnitude of WS:

Modeled_AOD; = C, x exp (-C, x SM;). (1

From (1), we can establish an MA by using SM (%) and WS
(m/s) datasets. In this study, we considered four different
MAs: the SMOS SM and GLDAS WS-based MA (hereafter,
SMOS-MA), the AMSR2 SM and GLDAS WS-based MA
(hereafter, AMSR2-MA), the MA based on GLDAS dataset
at 0600 (hereafter, GLDAS-MA_6), and the MA based on
GLDAS dataset at 1200 (hereafter, GLDAS MA_12). The
GLDAS-MA _6 and GLDAS-MA 12 enable us to make a fair
comparison between satellite and GLDAS SM products for
their dust outbreak prediction.

3.2. Soil Moisture Composition and Moving Average of MA
Products. We used five different composite SM products
(composited day: one- to five-day) to investigate the impact
of antecedent SM on dust outbreaks. We composited SMOS,
AMSR2, and GLDAS SM using following equation:
ydoy SM;

i=doy—comp_day i

comp_day

2)

composited SMy,, =

where doy is day of year.
To calculate the time series of the MA dataset of the
desert regions, we consolidated the daily available MA data



over the desert regions and averaged them by using following
equation:

Z?:Il MAi,do
average MAy,, = TY’ 3)
where N is the number of available MA data over the desert
pixels at doy and doy is day of year.
We set the composited day from one to five days.
Moreover, the 11-day moving averaged MA was calculated as
follows:

zdoy+5
i=doy-5

MA, | @

moving averaged MAgy,, = T

3.3. Comparison Metrics. The Pearson correlation coefficient
(R) between MA and MODIS-AOD was calculated using (5).
The bias (see (6)) was also considered. All metrics were used
when the p value was less than 0.05:

MA — MODIS-AOD)?

R= 1—2( ODIS 0)2 (5)
¥ (MA - MODIS-AOD)

Bias = mean (MODIS-AOD — MA). (6)

4. Results and Discussion

In East Asian deserts, dust outbreaks usually occur from early
March to late May. Figure 4(h) shows the time series for the
MODIS-AOD satellite data in 2015. The seasonal patterns
of dust outbreaks are consistent with the results of previous
research [12, 16]. The patterns can be well accounted for by
simultaneously considering the temporal changes of SM and
WS conditions (Figures 4(b) and 4(d)). The MODIS-AOD
values (Figure 4(h)) were usually high under low SM and high
WS conditions. However, this is not easily explained because
the threshold value of WS at which dust outbreaks occur
is greatly influenced by the SM conditions over the source
areas [81-84]. Moreover, the threshold values for WS and SM
shifted according to the AOD setting for dust outbreak states
[24].

4.1. Validation of MAs with AOD Observations. Validation of
the MAs with an assumed reference dataset from the MODIS-
AOD was performed to check the reliability of the models for
future prediction. Figure 5 shows the temporal pattern of the
MODIS-AOD and different MAs in the desert regions of East
Asia for 2015. A temporal comparison between the SMOS-
MA and MODIS-AOD shows a good correlation (R-value:
0.56), but mostly higher than MODIS-AOD (Figure 5(a)).
In the case of the AMSR-MA, a low correlation coeflicient
indicates that the temporal pattern of the MA dataset does
not follow the reference AOD well, as compared to the
SMOS-MA, and has an overall negative bias demonstrating
that it usually underestimates the AOD with respect to
the MODIS-AOD (Figure 5(b)). When the MA is based
on the GLDAS SM product matched with the SMOS (i.e.,
the GLDAS-MA_6) and AMSR2 (i.e., the GLDAS-MA_12)
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overpass LT, the correlation coefficient is still lower than
the SMOS-MA and underestimates the AOD; however, both
of the GLDAS-based models showed very similar temporal
patterns (Figure 5(c)). The analysis was further extended to
evaluate the prediction based on one- to five-day composite
SM products to consider the effect of antecedent conditions
for all MAs (Table in Figure 5). The results indicate that
different antecedent soil moisture conditions do not have
much influence on dust outbreaks, which can be explained
by the moisture memory concept [85, 86]. Specifically, desert
regions have persistently very low SM conditions without
dramatic daily fluctuations; thus, the WS, which is the
major factor in bringing about dust outbreaks in bare desert
areas, would affect more the timing of dust outbreaks. This
conclusion is supported by the time series results shown on
Figures 4(b) and 4(d). However, additional studies should be
conducted that simultaneously consider the specific amount
of variability of the antecedent WS and SM conditions before
a dust outbreak event. Investigating these aspects is beyond
the scope of this study.

4.2. Short-Term AOD Trends Analysis. In Figure 6, the 11-
day moving average MA products are depicted using (3) for
the short-term dust trends analysis. The solid red, light blue,
orange, gray, and purple lines indicate moving averages of the
MODIS-AOD, SMOS-MA, AMSR2-MA, GLDAS-MA_6, and
GLDAS-MA 12, respectively. The table in Figure 6 includes
the statistical results of each MA, including correlation and
bias values, by comparing them with moving averaged AOD
from MODIS-AOD. The SMOS-MA products showed the
best R-value (0.65) among other MAs. However, it showed
a reversed trend and overestimated AOD notably in the fall
season. This might be explained by unforeseen rainfall events
that were not been considered during the 75 h time interval
between the overpass time of SMOS and MODIS (Figure 2).
Particularly, in East Asia, these regions experience monsoon
season from September to October; thus, aerosols in the
atmosphere might suddenly decrease because of frequent
rainfall events. These abrupt AOD abatements would have
not been predicted based on the previous information of
SM and WS. During the spring and the summer seasons,
SMOS better simulated AOD trends, with an R-value of
0.70. Similarly, the GLDAS-MA_12 showed an R-value of
0.62, but the GLDAS-MA 12 also presented reversed AOD
trends similar to the SMOS-MA. The AMSR2-MA and the
GLDAS-MA _6 products exhibited R-values of 0.46 and 0.45,
respectively, and underestimated AOD in the spring and the
summer seasons and overestimated AOD in the fall season.

4.3. Limitations and Advantages of MA Products. Figures
7(a), 7(b), and 7(c) depict exemplary maps of the SMOS-
MA, masked MODIS-AOD dataset (i.e., eliminating AOD
values when AE > 0.35), and original AOD measurements
from MODIS-AOD (without AE masking) for investigating
a feature of MA products. Box (a)-1 predicts AOD to be
between 0.3 and 2.5 in the box area; however, box (b)-1
and box (c)-1 do not show any aerosol observations. There
are two feasible reasons that might support this mismatch.
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FIGURE 4: (a) The map of GLDAS volumetric soil moisture contents (%). (b) The time series for the average value of volumetric soil moisture
from the GLDAS for the desert regions. (c) The map of GLDAS near-surface wind speed (m/s). (d) The time series for the average value of
the GLADS near-surface wind speed for the desert regions. (e) The map of GLDAS near-surface temperature (°C). (f) The time series for the
average value of near-surface temperature for the desert regions. (g) The map of MODIS-based aerosol optical depth (AOD). (h) The time
series for the average value of AOD for the desert regions. All GLDAS datasets are based on SMOS local overpass time.

First, the AOD data might not have been observed using the
deep blue algorithms, mostly because of cloud masking. The
visible bands 3 (459 to 479 nm) and 8 (405 to 420 nm) cannot
pass through clouds, preventing the use of these data [33].
However, in high cloud coverage season we can still predict
the data with a microwave-based SM model. Second, most of
the dust particles were likely blown away before observation

by MODIS because the SMOS-MA in box (a)-1 was predicted
7.5 h before MODIS overpassed those areas. This is supported
by the fact that particles in box (c)-1 were mostly masked
out, as shown in box (b)-1, because they had high AE values,
which means that most of the aerosols in box (c)-1 would
have been susceptible to being blown away. Boxes (a)-2, (b)-
2, and (c)-2 indicate the limitation of MA datasets because



Observed AOD from MODIS versus AOD from SMOS-based calculations

Observed AOD (550 nm)
and modeled AOD

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360

Advances in Meteorology

Observed AOD from MODIS versus AOD from AMSR2-based calculations

Observed AOD (550 nm)
and modeled AOD

0
0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360

Day of year 2015 Day of year 2015
— SMOS —— AMSR2
——— MODIS —— MODIS
(a) (b)
25 Observed AOD from MODIS versus AOD from GLDAS-based calculations R-value Number of composited days
’ Products 1 2 3 4 5
’E\ SMOS 0.560 0.564 0.561 0.548 0.545
g o) 2 AMSR2 0.354 0.350 0.343 0.347 0.345
2 % GLDAS_SMOS 0.362 0.373 0.380 0.388 0.400
E.c 1.5 GLDAS_AMSR2 0.441 0.444 0.446 0.448 0.449
54
Q=
<72 1 Bias Number of composited days
T E
5 Products 1 2 3 4 5
25 05 SMOS 0.136 0.127 0.123 0.118 0.116
o AMSR2 —-0.127 —-0.124 —-0.121 —-0.120 -0.118
0L . L . L . . . X . . . GLDAS_SMOS -0.132 -0.132 -0.131 -0.131 -0.131
0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360 ~ _GLDAS AMSR2  -0113  -0.114  -0115  -0117  -0.l8
Day of year 2015
——— GLDAS_SMOS
——— MODIS
—— GLDAS_AMSR2
(©) (d)

FIGURE 5: Temporal pattern of observed AOD from MODIS and modeled AOD (exponential model based on SMOS, AMSR2, and GLDAS
soil moisture and GLDAS wind speed product) for the year 2015. (a) Observed AOD versus modeled AOD based on SMOS soil moisture, (b)
observed AOD versus modeled AOD based on AMSR2 soil moisture model, (c) observed AOD versus modeled AOD based on GLDAS soil
moisture products after matching UTC time with local times of SMOS and AMSR?2, and (d) statistical comparison of 1~5 days composite soil

moisture models AOD with observed AOD from MODIS.
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FIGURE 6: 11-day moving average of observed and modeled AOD in
different season of the year 2015 with statistical table of correlation
coefficient and bias values of AOD model with observed AOD from
MODIS.

they can only possibly calculate AOD values over desert
areas; thus, MAs are unable to estimate aerosols in nondesert
regions. In addition, the MA concept is unreasonable to
account for anthropogenic aerosols that were developed from
urban areas such as Beijing, China (boxes of (a)-2, (b)-
2, and (c¢)-2), and Seoul, South Korea ((a)-4, (b)-4, and
(c)-4).

4.4. Spatial Analysis of MA and AOD from MODIS. We
explored the spatial patterns of seasonally averaged AOD
calculated from MAs and MODIS-AOD (Figure 8). Gen-
erally, the SMOS-MA simulates AOD well in the Takli-
makan, Badain Jaran, Tengger, Ulan Buh, and Hobq Deserts;
however, it overestimates in the Gurbantunggut, Hunshan-
dake, and Horqin Deserts (Figure 1). Moreover, the prediction
in the spring season occurs more frequently than the summer
and the fall season. The observed AOD in the fall season
is mostly missing in a large portion of the Taklimakan and
Gurbantunggut Deserts. This might be due to many rainy
days (i.e., monsoon season in the fall) during which clouds
could obstruct the MODIS measurements. The AMSR2-
MA underestimated the AOD in most of the study regions
but captures AOD well in the Gurbantunggut and Gobi
Desert regions. Nonetheless, the AMSR2-MA overestimated
the AOD in the region (40-45°N and 90-100°E), which may
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FIGURE 7: Spatial distribution of AOD in the desert regions of East Asia in day of year 130 in 2015. (a) Modeled AOD based on SMOS soil
moisture and GLDAS wind speed, (b) MODIS AOD with Angstrom exponent mask (AE > 0.35, blown dust), and (c) observed AOD from
MODIS without Angstrom exponent mask. Images in right column indicate its left side’s 3D values, respectively.

be a result of the underestimation of SM, as the model is
calculated by SM. Similarly, the GLDAS-MA also captures the
AOD well but underestimates it in most of the study areas.
The SMOS-MA map clearly determines severe dust source
regions, such as the Taklimakan Desert, Badain Jaran Desert,
and Hushandake Desert, and Horgin Desert. These regions
are also highly related to sources of traveling dust under the
prevailing westerlies. Particularly in northeast Asia, Asian
dust storms during the most hazardous period might be
generated from these areas. These results are consistent with
those from numerous prior studies [60, 87, 88], and these
are the first time to be identified using only remotely sensed

SM analysis. Other areas that have been known to be dust
source regions, such as the Gobi Desert (box 7 in Figure 1),
are not included in this study because the sand fraction in
that region is low, and the main factors contributing to dust
emission in that region are dependent not only on SM and WS
but also on vegetation conditions (e.g., dead leaves and NDVI
variation) [15, 89]. In future studies, the SM contents retrieved
with other satellite-based sensors (i.e., ASCAT and SMAP)
and the corresponding land properties will be considered
for specific land surface conditions (i.e., vegetated areas) and
other factors (i.e., NDVIand clay and silt fraction) in dynamic
environments.
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5. Summary and Conclusions

In this study, SMOS, AMSR2, and GLDAS/Noah SM products
in combination with GLDAS WS product were used to
predict the AOD in 2015 over East Asian desert areas. SMOS-
MA better estimated the AOD compared to the AMSR2-
MA and GLDAS-MA in desert regions with highly polluted
atmospheric conditions. The aerosol products, observed from
the MODIS sensor, were used as a reference dataset to validate
the MA. The validation results showed that the SMOS-
MA captured the temporal patterns well, with a R-value
0.56; however, it overestimated the reference AOD. A short-
term trend analysis was conducted by calculating the 11-day
moving average of MAs, the result of which showed that
the SMOS-MA dataset demonstrated superior performance
in capturing the short-term trends when compared to other
MAs (R = 0.65). In addition, the results from investigating
the impact of the antecedent SM on dust outbreaks showed
that R-values have not changed much with respect to different
antecedent SM conditions. In this regard, we assume that the

antecedent SM condition could not be the major factor that
governs the timing of dust outbreaks. This is supported by
the fact that bare desert regions have persistently very low
SM conditions so that the WS, which fluctuates relatively
more severely than SM (Figures 4(b) and 4(d)) over desert
regions, would play a more pivotal role in triggering dust
outbreaks. Moreover, spatial maps in different seasons also
demonstrated that the SMOS-MA showed better consistency
with the reference dataset compared to other MAs. The find-
ings of this study reveal the application of microwave-based
SM retrievals for near-real time dust outbreak predictions
and short-term dust outbreak trend analysis. Future research
will focus on the most robust modeling approach, based
on machine learning, to improve MA products by utilizing
the most recent and accurate available SM dataset from
SMAP. In addition, Essential Climate Variable SM datasets are
considered to be strong candidate products for the long-term
AOD trend analysis, and the Representative Concentration
Pathways dataset may be utilized to investigate AOD trends
in the near future.



Advances in Meteorology

Competing Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

Acknowledgments

This work was supported by the National Research Foun-
dation of Korea (NRF) grant funded by the Korea government
(MSIP) (NRF-2016R1A2B4008312). This research was sup-
ported by Space Core Technology Development Program
through the National Research Foundation of Korea (NRF)
funded by the Ministry of Science, ICT, and Future Planning
(NRF-2014M1A3A3A02034789). The SMOS data were pro-
vided by the Centre Aval de Traitement des Données
SMOS (CNES-IFREMER) and through the ESA-Supported
SMOS Validation and Retrieval Team program. The aerosol
optical depth data that were used in this study were obtained
from https://ladsweb.modaps.eosdis.nasa.gov/data/. The Glob-
al Land Data Assimilation System (GLDAS) data used in this
study were acquired as part of the mission of NASAs Earth
Science Division; these data are archived and distributed by
the Goddard Earth Sciences (GES) Data and Information
Services Centre (DISC) (https://disc.sci.gsfc.nasa.gov/). The
most recent AMSR2 LPRM SM datasets were provided by
Dr. Parinussa.

References

[1] N. M. Mahowald, D. R. Muhs, S. Levis et al, “Change in
atmospheric mineral aerosols in response to climate: last glacial
period, preindustrial, modern, and doubled carbon dioxide
climates,” Journal of Geophysical Research Atmospheres, vol. 111,
no. D10, Article ID D10202, 2006.

[2] R. L. Miller and I. Tegen, “Climate response to soil dust
aerosols,” Journal of Climate, vol. 11, no. 12, pp. 3247-3267,1998.

[3] I. N. Sokolik and O. B. Toon, “Direct radiative forcing by
anthropogenic airborne mineral aerosols,” Nature, vol. 381, no.
6584, pp. 681-683, 1996.

[4] L. Tegen, A. A. Lacis, and I. Fung, “The influence on climate
forcing of mineral aerosols from disturbed soils,” Nature, vol.
380, no. 6573, pp. 419-422, 1996.

[5] S. Wurzler, T. G. Reisin, and Z. Levin, “Modification of mineral
dust particles by cloud processing and subsequent effects
on drop size distributions,” Journal of Geophysical Research
Atmospheres, vol. 105, no. 4, pp. 4501-4512, 2000.

[6] Z. Levin, E. Ganor, and V. Gladstein, “The effects of desert
particles coated with sulfate on rain formation in the eastern
Mediterranean,” Journal of Applied Meteorology, vol. 35, no. 9,
pp. 1511-1523, 1996.

[7] G. S. Okin, N. Mahowald, O. A. Chadwick, and P. Artaxo,
“Impact of desert dust on the biogeochemistry of phosphorus
in terrestrial ecosystems,” Global Biogeochemical Cycles, vol. 18,
no. 2, 2004.

[8] T. Larssen and G. R. Carmichael, “Acid rain and acidification in
China: the importance of base cation deposition,” Environmen-
tal Pollution, vol. 110, no. 1, pp. 89-102, 2000.

[9] P.G. Falkowski, R. T. Barber, and V. Smetacek, “Biogeochemical
controls and feedbacks on ocean primary production,” Science,
vol. 281, no. 5374, pp. 200-206, 1998.

1

[10] S.P. Parajuli, Z. Yang, and G. Kocurek, “Mapping erodibility in
dust source regions based on geomorphology, meteorology, and
remote sensing,” Journal of Geophysical Research: Earth Surface,
vol. 119, no. 9, pp. 1977-1994, 2014.

[11] H. Breitkreuz, M. Schroedter-Homscheidt, and T. Holzer-Popp,
“A case study to prepare for the utilization of aerosol forecasts
in solar energy industries,” Solar Energy, vol. 81, no. 11, pp. 1377-
1385, 2007.

[12] J. M. Prospero, P. Ginoux, O. Torres, S. E. Nicholson, and T.
E. Gill, “Environmental characterization of global sources of
atmospheric soil dust identified with the Nimbus 7 Total Ozone
Mapping Spectrometer (TOMS) absorbing aerosol product,
Reviews of Geophysics, vol. 40, no. 1, pp. 1-31, 2002.

[13] H. Lee, Y. Honda, Y.-H. Lim, Y. L. Guo, M. Hashizume, and H.
Kim, “Effect of Asian dust storms on mortality in three Asian
cities,” Atmospheric Environment, vol. 89, pp. 309-317, 2014.

(14] H.-J. Kwon, S.-H. Cho, Y. Chun, E Lagarde, and G. Pershagen,
“Effects of the Asian dust events on daily mortality in Seoul,
Korea,” Environmental Research, vol. 90, no. 1, pp. 1-5, 2002.

[15] Y. Kurosaki, M. Shinoda, and M. Mikami, “What caused a recent
increase in dust outbreaks over East Asia?” Geophysical Research
Letters, vol. 38, no. 11, Article ID L11702, 2011.

[16] Y. Kurosaki and M. Mikami, “Recent frequent dust events and
their relation to surface wind in East Asia,” Geophysical Research
Letters, vol. 30, no. 14, 2003.

(17] M. Ishizuka, M. Mikami, Y. Yamada, F. Zeng, and W. Gao, “An
observational study of soil moisture effects on wind erosion at
a gobi site in the Taklimakan Desert,” Journal of Geophysical
Research: Atmospheres, vol. 110, no. 15, 2005.

[18] S. Ravi and P. D’Odorico, “A field-scale analysis of the depen-
dence of wind erosion threshold velocity on air humidity;’
Geophysical Research Letters, vol. 32, no. 21, pp. 1-4, 2005.

[19] S. Ravi, P. D’Odorico, T. M. Over, and T. M. Zobeck, “On the
effect of air humidity on soil susceptibility to wind erosion: the
case of air-dry soils,” Geophysical Research Letters, vol. 31, no. 9,
2004.

[20] O. Chomette, M. Legrand, and B. Marticorena, “Determination
of the wind speed threshold for the emission of desert dust
using satellite remote sensing in the thermal infrared,” Journal
of Geophysical Research: Atmospheres, vol. 104, no. 24, pp. 31207-
31215, 1999.

[21] D. W. Fryrear, “Soil cover and wind erosion,” Transactions of
the American Society of Agricultural Engineers, vol. 28, no. 3, pp.
781-784,1985.

[22] C. McKenna-Neuman and W. G. Nickling, “A theoretical and
wind tunnel investigation of the effect of capillary water on the
entrainment of sediment by wind,” Canadian Journal of Soil
Science, vol. 69, no. 1, pp. 79-96, 1989.

[23] P.Y. Belly, Sand Movement by Wind, USACE, 1964.

[24] H.Kim and M. Choi, “Impact of soil moisture on dust outbreaks
in East Asia: using satellite and assimilation data,” Geophysical
Research Letters, vol. 42, no. 8, pp. 2789-2796, 2015.

[25] K. Schepanski, I. Tegen, and A. Macke, “Comparison of satellite
based observations of Saharan dust source areas,” Remote
Sensing of Environment, vol. 123, pp. 90-97, 2012.

[26] H. Cao, F. Amiraslani, J. Liu, and N. Zhou, “Identification of dust
storm source areas in West Asia using multiple environmental
datasets,” Science of the Total Environment, vol. 502, pp. 224-235,
2015.

[27] S. S. Park, J. Kim, J. Lee et al., “Combined dust detection
algorithm by using MODIS infrared channels over East Asia,”
Remote Sensing of Environment, vol. 141, pp. 24-39, 2014.


https://ladsweb.modaps.eosdis.nasa.gov/data/
https://disc.sci.gsfc.nasa.gov/daac-bin/FTPSubset.pl

12

(28]

[30]

(31]

(32]

(33]

(37]

(41]

(42]

(43]

S. A. Christopher, P. Gupta, B. Johnson, C. Ansell, H. Brindley,
and J. Haywood, “multi-sensor satellite remote sensing of dust
aerosols over north africa during gerbils,” Quarterly Journal of
the Royal Meteorological Society, vol. 137, no. 658, pp. 1168-1178,
2011.

M. C. Baddock, J. E. Bullard, and R. G. Bryant, “Dust source
identification using MODIS: a comparison of techniques
applied to the Lake Eyre Basin, Australia,” Remote Sensing of
Environment, vol. 113, no. 7, pp. 1511-1528, 2009.

R. A. Hansell, S. C. Ou, K. N. Liou et al., “Simultaneous
detection/separation of mineral dust and cirrus clouds using
MODIS thermal infrared window data,” Geophysical Research
Letters, vol. 34, no. 11, Article ID L11808, 2007.

K. Schepanski, I. Tegen, B. Laurent, B. Heinold, and A. Macke,
“A new Saharan dust source activation frequency map derived
from MSG-SEVIRI IR-channels,” Geophysical Research Letters,
vol. 34, no. 18, Article ID L18803, 2007.

J. K. Roskovensky and K. N. Liou, “Differentiating airborne dust
from cirrus clouds using MODIS data,” Geophysical Research
Letters, vol. 32, no. 12, pp. 1-5, 2005.

N. C. Hsu, S.-C. Tsay, M. D. King, and J. R. Herman, “Aerosol
properties over bright-reflecting source regions,” IEEE Transac-
tions on Geoscience and Remote Sensing, vol. 42, no. 3, pp. 557-
569, 2004.

S. D. Miller, “A consolidated technique for enhancing desert
dust storms with MODIS,” Geophysical Research Letters, vol. 30,
no. 20, 2003.

T. J. Jackson, M. H. Cosh, R. Bindlish et al., “Validation
of advanced microwave scanning radiometer soil moisture
products,” IEEE Transactions on Geoscience and Remote Sensing,
vol. 48, no. 12, pp. 4256-4272, 2010.

Y. H. Kerr, P. Waldteufel, J.-P. Wigneron et al., “The SMOS
mission: new tool for monitoring key elements ofthe global
water cycle,” Proceedings of the IEEE, vol. 98, no. 5, pp. 666-687,
2010.

M. Choi and J. M. Jacobs, “Temporal variability corrections
for Advanced Microwave Scanning Radiometer E (AMSR-E)
surface soil moisture: case study in Little River Region, Georgia,
U.S;” Sensors, vol. 8, no. 4, pp. 2617-2627, 2008.

Y. H. Kerr, P. Waldteufel, P. Richaume et al., “The SMOS soil

moisture retrieval algorithm,” IEEE Transactions on Geoscience
and Remote Sensing, vol. 50, no. 5, pp. 1384-1403, 2012.

W. Wagner, G. Lemoine, and H. Rott, “A method for estimating
soil moisture from ERS Scatterometer and soil data,” Remote
Sensing ofEm/ironment, vol. 70, no. 2, pp. 191-207, 1999.

D. J. Leroux, Y. H. Kerr, P. Richaume, and R. Fieuzal, “Spatial
distribution and possible sources of SMOS errors at the global
scale,” Remote Sensing of Environment, vol. 133, pp. 240-250,
2013.

R. M. Parinussa, G. Wang, T. R. H. Holmes et al., “Global
surface soil moisture from the Microwave Radiation Imager
onboard the Fengyun-3B satellite,” International Journal of
Remote Sensing, vol. 35, no. 19, pp. 7007-7029, 2014.

C.-H. Su, D. Ryu, R. I. Young, A. W. Western, and W.
Wagner, “Inter-comparison of microwave satellite soil moisture
retrievals over the Murrumbidgee Basin, southeast Australia,”
Remote Sensing of Environment, vol. 134, pp. 1-11, 2013.

W. Wagner, S. Hahn, R. Kidd et al., “The ASCAT soil moisture
product: a review of its specifications, validation results, and
emerging applications,” Meteorologische Zeitschrift, vol. 22, no.
1, pp. 5-33, 2013.

(44]

[46]

(48]

(52]

(54

(55]

Advances in Meteorology

L. Brocca, S. Hasenauer, T. Lacava et al., “Soil moisture estima-
tion through ASCAT and AMSR-E sensors: an intercomparison
and validation study across Europe,” Remote Sensing of Environ-
ment, vol. 115, no. 12, pp. 3390-3408, 2011.

W. A. Dorigo, K. Scipal, R. M. Parinussa et al., “Error charac-
terisation of global active and passive microwave soil moisture
datasets,” Hydrology and Earth System Sciences, vol. 14, no. 12,
pp. 2605-2616, 2010.

S. Kim, Y. Y. Liu, E M. Johnson, R. M. Parinussa, and A.
Sharma, “A global comparison of alternate AMSR2 soil moisture
products: why do they differ?” Remote Sensing of Environment,
vol. 161, pp. 43-62, 2015.

E. Cho, C.-H. Su, D. Ryu, H. Kim, and M. Choi, “Does AMSR2
produce better soil moisture retrievals than AMSR-E over
Australia?” Remote Sensing of Environment, vol. 188, pp. 95-105,
2017.

Z. Bartalis, W. Wagner, V. Naeimi et al., “Initial soil mois-
ture retrievals from the METOP-A Advanced Scatterometer
(ASCAT),” Geophysical Research Letters, vol. 34, no. 20, Article
ID L20401, 2007.

W. A. Dorigo, A. Gruber, R. A. M. De Jeu et al., “Evaluation
of the ESA CCI soil moisture product using ground-based
observations,” Remote Sensing of Environment, vol. 162, pp. 380-
395, 2015.

D. Ryu, T. J. Jackson, R. Bindlish, and D. M. Le Vine,
“L-band microwave observations over land surface using a
two-dimensional synthetic aperture radiometer,” Geophysical
Research Letters, vol. 34, no. 14, 2007.

C. Riidiger, J. P. Walker, Y. H. Kerr et al., “Toward vicari-
ous calibration of microwave remote-sensing satellites in arid
environments,” IEEE Transactions on Geoscience and Remote
Sensing, vol. 52, no. 3, pp- 1749-1760, 2014.

E. Cho, H. Moon, and M. Choi, “First assessment of the
Advanced Microwave Scanning Radiometer 2 (AMSR2) soil
moisture contents in Northeast Asia,” Journal of the Meteoro-
logical Society of Japan, vol. 93, no. 1, pp. 117-129, 2015.

Q. Wu, H. Liu, L. Wang, and C. Deng, “Evaluation of AMSR2
soil moisture products over the contiguous United States using
in situ data from the international soil moisture network,
International Journal of Applied Earth Observation and Geoin-
formation, vol. 45, pp. 187-199, 2016.

R. E. Dickinson, A. Henderson-Sellers, P. J. Kennedy, and M.
E Wilson, “Biosphere-Atmosphere Transfer Scheme (BATS) for
the NCAR community climate model,” NCAR Technical Note
NCAR/TN-275+STR, NCAR, Boulder, Colo, USA, 1986.

J. S. Olson, Global Ecosystems Framework: Definitions. Internal
Report, vol. 37, USGS EROS Data Center, Sioux Falls, SD, USA,
1994.

FAO/IIASA/ISRIC/ISSCAS/JRC, Harmonized World Soil Data-
base (Version 1.2), FAO, Rome, Italy; ITASA, Laxenburg, Austria,
2012.

A. Fadil, H. Rhinane, A. Kaoukaya, Y. Kharchaf, and O. A.
Bachir, “Hydrologic modeling of the bouregreg watershed
(Morocco) using GIS and SWAT model,” Journal of Geographic
Information System, vol. 3, no. 4, pp. 279-289, 2011.

N. H. Batjes, “Harmonized soil profile data for applications at
global and continental scales: updates to the WISE database,”
Soil Use and Management, vol. 25, no. 2, pp. 124-127, 2009.

K. E. Saxton and W. J. Rawls, “Soil water characteristic estimates
by texture and organic matter for hydrologic solutions,” Soil
Science Society of America Journal, vol. 70, no. 5, pp. 1569-1578,
2006.



Advances in Meteorology

[60]

(61]

[65]

[67]

(73]

(74]

[75]

J. Huang, J. Ge, and E Weng, “Detection of Asia dust storms
using multisensor satellite measurements,” Remote Sensing of
Environment, vol. 110, no. 2, pp. 186-191, 2007.

J. Sun, M. Zhang, and T. Liu, “Spatial and temporal charac-
teristics of dust storms in China and its surrounding regions,
1960-1999: Relations to source area and climate;” Journal of
Geophysical Research Atmospheres, vol. 106, no. D10, Article ID
2000JD900665, pp. 10325-10333, 2001.

X. Wang, Z. Dong, J. Zhang, and L. Liu, “Modern dust storms in
China: an overview; Journal of Arid Environments, vol. 58, no.
4, pp. 559574, 2004.

H. Lee, H. Kim, Y. Honda, Y.-H. Lim, and S. Yi, “Effect of Asian
dust storms on daily mortality in seven metropolitan cities of
Korea,” Atmospheric Environment, vol. 79, pp. 510-517, 2013.

Y. Kurosaki and M. Mikami, “Threshold wind speed for dust
emission in east Asia and its seasonal variations,” Journal of
Geophysical Research Atmospheres, vol. 112, no. 17, Article ID
D17202, 2007.

T. Lacava, P. Matgen, L. Brocca et al., “A first assessment of the
SMOS soil moisture product with in situ and modeled data in
Italy and Luxembourg,” IEEE Transactions on Geoscience and
Remote Sensing, vol. 50, no. 5, pp. 1612-1622, 2012.

C. Albergel, P. de Rosnay, C. Gruhier et al, “Evaluation of
remotely sensed and modelled soil moisture products using
global ground-based in situ observations,” Remote Sensing of
Environment, vol. 118, pp. 215-226, 2012.

R. A. M. De Jeu, W. Wagner, T. R. H. Holmes, A. J. Dolman,
N. C. Van De Giesen, and J. Friesen, “Global soil moisture
patterns observed by space borne microwave radiometers and
scatterometers,” Surveys in Geophysics, vol. 29, no. 4-5, pp. 399-
420, 2008.

R. Oliva, E. Daganzo-Eusebio, Y. H. Kerr et al., “SMOS radio
frequency interference scenario: status and actions taken to
improve the RFI environment in the 1400-1427-MHZ passive
band,” IEEE Transactions on Geoscience and Remote Sensing, vol.
50, no. 5, pp. 1427-1439, 2012.

T. Mo, B. J. Choudhury, T. J. Schmugge, J. R. Wang, and T. J.
Jackson, “A model for microwave emission from vegetation-
covered fields,” Journal of Geophysical Research, vol. 87, no. 13,
pp. 11229-11237, 1982.

R. M. Parinussa, T. R. H. Holmes, M. T. Yilmaz, and W. T.
Crow, “The impact of land surface temperature on soil mois-
ture anomaly detection from passive microwave observations,”
Hydrology and Earth System Sciences, vol. 15, no. 10, pp. 3135-
3151, 2011.

L. A. Remer, Y. ]. Kaufman, D. Tanré et al., “The MODIS aerosol
algorithm, products, and validation,” Journal of the Atmospheric
Sciences, vol. 62, no. 4, pp. 947-973, 2005.

A. Savtchenko, D. Ouzounov, S. Ahmad et al., “Terra and Aqua
MODIS products available from NASA GES DAAC,” Advances
in Space Research, vol. 34, no. 4, pp. 710-714, 2004.

M. Sorek-Hamer, I. Kloog, P. Koutrakis et al., “Assessment
of PM2.5 concentrations over bright surfaces using MODIS
satellite observations,” Remote Sensing of Environment, vol. 163,
pp. 180-185, 2015.

P. Ginoux, J. M. Prospero, T. E. Gill, N. C. Hsu, and M. Zhao,
“Global-scale attribution of anthropogenic and natural dust
sources and their emission rates based on MODIS Deep Blue
aerosol products,” Reviews of Geophysics, vol. 50, no. 3, 2012.
M. Decker, M. A. Brunke, Z. Wang, K. Sakaguchi, X. Zeng, and
M. G. Bosilovich, “Evaluation of the reanalysis products from

[76]

(81]

(82]

(87]

(88]

13

GSFC, NCEP, and ECMWF using flux tower observations,”
Journal of Climate, vol. 25, no. 6, pp. 1916-1944, 2012.

J. Sheflield, G. Goteti, and E. E. Wood, “Development of a 50-
year high-resolution global dataset of meteorological forcings
for land surface modeling,” Journal of Climate, vol. 19, no. 13,
pp- 3088-3111, 2006.

M. Rodell, P. R. Houser, U. Jambor et al., “The global land data
assimilation system,” Bulletin of the American Meteorological
Society, vol. 85, no. 3, pp- 381-394, 2004.

H. Seyyedi, E. N. Anagnostou, E. Beighley, and J. McCollum,
“Satellite-driven downscaling of global reanalysis precipitation
products for hydrological applications,” Hydrology and Earth
System Sciences, vol. 18, no. 12, pp. 5077-5091, 2014.

K. E. Mitchell, D. Lohmann, P. R. Houser et al., “The multi-
institution North American Land Data Assimilation System
(NLDAS): utilizing multiple GCIP products and partners in a
continental distributed hydrological modeling system,” Journal
of Geophysical Research D: Atmospheres, vol. 109, no. D7, 2004.
T.E. Eck, B. N. Holben, J. S. Reid et al., “Wavelength dependence
of the optical depth of biomass burning, urban, and desert dust
aerosols,” Journal of Geophysical Research Atmospheres, vol. 104,
no. 24, pp. 31333-31349, 1999.

Z. Dong, X. Liu, and X. Wang, “Wind initiation thresholds of
the moistened sands,” Geophysical Research Letters, vol. 29, no.
12, pp. 25-1-25-4, 2002.

E Fécan, B. Marticorena, and G. Bergametti, “Parametrization
of the increase of the aeolian erosion threshold wind friction
velocity due to soil moisture for arid and semi-arid areas,”
Annales Geophysicae, vol. 17, no. 1, pp. 149-157,1999.

D. G. Waggoner and I. N. Sokolik, “Seasonal dynamics and
regional features of MODIS-derived land surface characteristics
in dust source regions of East Asia,” Remote Sensing of Environ-
ment, vol. 114, no. 10, pp. 2126-2136, 2010.

D. A. Gillette, J. Adams, D. Muhs, and R. Kihl, “Threshold
friction velocities and rupture moduli for crusted desert soils
for the input of soil particles into the air,” Journal of Geophysical
Research, vol. 87, no. 11, pp. 9003-9015, 1982.

R. D. Koster and M. J. Suarez, “Soil moisture memory in climate
models,” Journal of Hydrometeorology, vol. 2, no. 6, pp. 558-570,
2001.

S. 1. Seneviratne and R. D. Koster, “A revised framework for
analyzing soil moisture memory in climate data: derivation and
interpretation,” Journal of Hydrometeorology, vol. 13, no. 1, pp.
404-412, 2012.

A. Higurashi and T. Nakajima, “Detection of aerosol types over
the East China Sea near Japan from four-channel satellite data,”
Geophysical Research Letters, vol. 29, no. 17, pp. 17-1-17-4, 2002.
J. M. Haywood, V. Ramaswamy, and B. J. Soden, “Tropospheric
aerosol climate forcing in clear-sky satellite observations over
the oceans,” Science, vol. 283, no. 5406, pp. 1299-1303, 1999.

X. Liu, Z.-Y. Yin, X. Zhang, and X. Yang, “Analyses of the
spring dust storm frequency of northern China in relation
to antecedent and concurrent wind, precipitation, vegetation,
and soil moisture conditions,” Journal of Geophysical Research:
Atmospheres, vol. 109, no. 16, 2004.



Journal of

Mining

The Scientific
World Journal

Journal of

Earthquakes

E’Oeutrpgieotfjm Engineering H i n d aWi
Submit your manuscripts at
https://www.hindawi.com

International Journal of

Oceanography

Advances in Journal of OheineEs [ Advances in

Meteorology Climatology Oceanography

Applied &
International Journal of Journal of International Journal of Environmental

Mineralogy Geological Research Atmospheric Sciences Science




