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Abstract The conditional merging (CM) spatial interpo-

lation technique was applied to obtain the composite soil

moisture products using the AMSR2 and in situ soil

moisture for the 51 days of the summer through the late fall

season of the year 2012 in Korean Peninsula. The ‘leave

one out cross-validation’ analysis was conducted to assess

the performance of the composite soil moisture products in

estimating the soil moisture in ungagged locations. The

control variable for comparison was the soil moisture

products obtained by spatially interpolating the in situ soil

moisture data measured at eight gage locations using the

Ordinary Kriging (KR) technique. The results show that the

composite soil moisture products are more accurate than

the in situ only soil moisture products in estimating the soil

moisture for the following cases: (1) when the spatial

correlation of in situ soil moisture data is low. Such case

includes when there is little rainfall and where the altitude

is high (mountainous area) and (2) where the gage density

is low or the area located further away from the in situ

gages. For both cases, the KR method cannot use enough

information due to the low spatial correlation of the in situ

measurement for interpolation, while the CM method can

take advantage of the satellite soil moisture measurement

not affected by the spatial correlation of the in situ data.

Keywords Soil moisture � AMSR2 � Remotely sensed soil

moisture � Conditional merging technique � Kriging

1 Introduction

Soil moisture has been regarded as one of the most

important variables in hydrological, biological and metro-

logical systems and plays a major role in the mass and

energy transfers between the land and the atmosphere

(Wagner et al. 1999; Kerr et al. 2001; Njoku et al. 2003;

Choi and Jacobs 2008; Albergel et al. 2009; Entekhabi

et al. 2010; Dorigo et al. 2010; Brocca et al. 2011; Al-Yaari

et al. 2014). Moreover, soil moisture is a key variable in

climate change and natural disaster prediction such as

drought, sand dust storms, and flooding. Therefore, soil

moisture variable was identified as one of the ‘‘Essential

Climate Variables’’ (Li et al. 2015; Crow et al. 2005;

System GCO 2010; Bolten et al. 2010; Yoo et al. 2006;

Kim and Choi 2015). For these reasons, the investigation of

measuring and estimating soil moisture are all very

important (Dorigo et al. 2011).

Soil moisture has been measured with different temporal

and spatial resolutions including ground-based measure-

ments (i.e., point scale) and satellite-based remote sensing

techniques (i.e., global scale) (Köhli et al. 2015; Schmugge

et al. 2002). There are three major measurement technics

are widely used for the ground-based soil moisture mea-

surement. First of all, soil moisture content are measured

by employing the gravimetric method and this method is
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the standard procedure of soil water content determination

(Reynolds 1970). The second, soil moisture information

can be obtain through the various electronic sensor

instruments such as time domain reflectometry (TDR) or

frequency domain reflectometry (FDR) methods. TDR and

FDR methods are commonly used for their simplicity and

high accuracy of determining soil moisture. Furthermore,

the latest technology for measuring ground-based soil

moisture is by cosmic-ray neutron, which has footprint

radius of about 300 m and proved to be efficient in mea-

suring soil moisture content at larger scale compared point-

wise measurements (Zreda et al. 2008, 2012). These

ground-based soil moisture value measurements have been

frequently used to validate and calibrate remotely sensed

and model estimates of soil moisture products.

The in situ soil moisture dataset is regarded as a true

value of soil moisture and commonly used as a reference

value to validate remotely sensed soil moisture retrieval

(Dorigo et al. 2011; Mittelbach and Seneviratne 2012; Yoo

2002; Topp et al. 1980). However, previous research has

not applied ground measurements of soil moisture to revise

satellite-based soil moisture products (Brocca et al. 2009;

Cosh et al. 2008; Wagner et al. 2008). Ground measure-

ments as an ancillary dataset to support satellite-based soil

moisture products is has been likely due to a scale dis-

crepancy between ground measurements and satellite-

based products. To overcome the scale discrepancy of a

dataset, geostatistical methods (e.g. Kriging, inverse dis-

tance weighting and spline) for ground measurements can

be applied to match the spatial scale with satellite-based

soil moisture products for disaggregation analysis (Dani

and Hanks 1992; Mohanty et al. 2000). Kriging is a geo-

statistical method that provides estimates for ungauged

areas using the weighted average of neighboring area val-

ues in the range of influence (Azimi-Zonooz et al. 1989).

Kriging is an effective method for inferring soil moisture

estimations and variance, since it provides the optimal

interpolation of an estimated soil moisture value by dis-

tributed pixels.

Most previous work using Kriging-based soil moisture

prediction has been performed by directly interpolating

ground measurements (Bardossy and Lehmann 1998).

However, soil moisture has high variability even within

short distances. The Kriging method is limited in predicting

soil moisture products when the study areas have ground

condition heterogeneity, such as different types of land use

regions, soil texture areas and mountainous areas with

varying elevation levels (Pandey and Pandey 2010). In this

respect, the Kriging method should be applied in small

catchment scale for reasonable results of interpolated soil

moisture products (Anctil et al. 2002; Bardossy and Leh-

mann 1998; Herbst and Diekkruger 2003; Wang et al.

2001). In the rainfall research, the strategies of combining

the satellite-based and Kriging ground datasets have been

widely used to overcome the limitation of area represen-

tativeness of point scale measurements and high variability

of satellite-based datasets; this is called the ‘‘Conditional

Merging (CM)’’ technique. Ebert (2007) applied a CM

technique proposed by Ehret (2003) to combine a mean

precipitation field interpolated from rain gauge observa-

tions with radar-based products with the spatial variability

of precipitation. In general, previous rainfall research

applying the CM method presented reasonable results

compared with ground based measurements and showed

improved spatial and temporal variability of rainfall fields.

Despite these benefits of CM strategies, the CM method

has not been applied in remotely sensed soil moisture data

analysis.

In this study we used ground measurements and satel-

lite-based products to estimate the applicability of CM

method applied in a soil moisture dataset. Since point-wise

measurement and cosmic-ray neutron methods limit spatial

representation of remotely sensed soil moisture datasets, so

satellite-based soil moisture retrievals were applied for

assessing the area soil moisture content.

Previous studies investigated surface soil moisture from

remote sensing instruments onboard satellites to overcome

spatial and temporal variability of soil moisture (Kerr et al.

2010; Njoku et al. 2003). The National Aeronautics and

Space Administration (NASA) launched the Soil Moisture

Active Passive (SMAP) Earth satellite mission in January

2015 (Entekhabi et al. 2010) to measure and map the

Earth’s soil moisture. The European Space Agency (ESA)

launched the Soil Moisture Ocean Salinity (SMOS) in

November 2009 (Kerr et al. 2001) and the Japan Aerospace

Exploration Agency (JAXA) launched Advanced Micro-

wave Scanning Radiometer 2 (AMSR2, the successor

mission of the AMSR for the EOS, AMSR-E) in March

2012 (Imaoka et al. 2010) to monitor soil moisture at a

global scale. Other promising satellites (e.g. MetOp-A, -B,

Aquarius, and Fengyun-3B) are also making global soil

moisture observations (Parinussa et al. 2015; Brocca et al.

2010) using microwave instruments.

The 1–11 GHz low-frequency microwave-based remote

sensing can provide quantitative information about few

centimeters of soil moisture from the surface depending on

its wavelength (Schmugge et al. 2002). In this study, we

used the AMSR2 soil moisture dataset to supplement the

Kriging method when it is applied to the ground-based

measurement of soil moisture through the CM merging

methodology. The AMSR2 sensor onboard the Global

Change Observation Mission1-Water (GCOM-W1) is a

passive microwave sensor that provides almost real-time

observation of soil moisture with high accuracy (Imaoka

et al. 2010). AMSR2 frequency bands include 6.925, 7.3,

1065, 18.7, 23.8, 36.5 and 89.0 GHz to retrieve surface soil
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moisture content from the Earth every 1–3 days (Imaoka

et al. 2010). JAXA’s soil moisture retrieval algorithm and

land parameter retrieval model (LPRM) are commonly

used to retrieve the surface soil moisture from the bright-

ness temperature (Tb) obtained from the AMSR2 sensor

(Cho et al. 2015; Fujii et al. 2009). In this study, we use

LPRM products since it documents a reasonably accurate

soil moisture value throughout the world (Kim et al. 2015).

To summarize, our study assessed the following: First,

the CM method was applied to study soil moisture products

using point measurements and remotely sensed soil mois-

ture products. Second, we compared the CM method with

the original Kriging method through the statistical analysis.

Last, both the CM and original Kriging strategies were

analyzed based on hydrological variable characteristics

such as precipitation, seasonality, geomorphology and

observation density to investigate the application of the

CM strategy to combine different characteristics of soil

moisture products.

2 Methodology

2.1 Study area and period

The study area chosen was Korean Peninsula, located at

34�–39�N latitude and 26�–130�E longitude (Kyoung et al.

2011). The Korean Peninsula is highly influenced by the

east-Asian monsoon climate, so it has a high annual rain-

fall, varying between 1000 and 1900 mm depending on the

region. Approximately 70% of the entire annual rainfall is

concentrated during the summer season, starting from early

June and ending early in September (Kim et al. 2002). The

soil of Korean Peninsula is composed of sandy loam, loam,

and sand. Major land use of Korean Peninsula is composed

of mixed forest and cropland (Cho and Choi 2014). Fig-

ure 1a shows the location of the Korean Peninsula on a

world map. The satellite and in situ soil moisture data

starting from July 2012 to October 2012 was used for this

study, yielding 121 days’ worth of data. The satellite soil

moisture data was available for 51 of those days. There-

fore, the analysis performed in this study covers the

51 days of soil moisture data collected by the AMSR2.

2.2 Satellite soil-moisture data

The satellite soil moisture data used in this study was

obtained from the measurement from the AMSR2 sensor

installed on the Global Change Observation Mission 1

(GCOM-W1) satellite launched on May 18, 2012 by Japan

Aerospace Exploration Agency (JAXA). The soil moisture

products based on the AMSR2 sensor measurements was

provided starting from July 2012 using the JAXA

algorithm and providing near-surface soil moisture infor-

mation (1–2 cm) (Fujii et al. 2009; Parinussa et al. 2015).

NASA also used the LPRM algorithm (Owe et al. 2008) to

calculate the soil moisture products from AMSR2 sensor

measurements.

Kim et al. (2015) compared the soil moisture products

using these two different algorithms and concluded that the

LPRM algorithm produced a smaller overall bias and root

mean square error (RMSE) compared to the JAXA algo-

rithm. However, the JAXA algorithm performed better in

dry conditions. Currently, the JAXA algorithm calculated

soil moisture products can be obtained from the JAXA

website (https://gcom-w1.jaxa.jp/) and the LPRM algo-

rithm based soil moisture products can be obtained from

the NASA website (http://gcmd.gsfc.nasa.gov/). This study

used the LPRM algorithm based soil moisture product,

since Korean Peninsula has a temperate humid climate.

Also we did not consider the cold season since the

microwave retrieved soil moisture products in the frozen

season is known to have accuracy issue due to land freeze

especially the LPRM-based soil moisture retrievals showed

an unusual pattern of soil moisture variability when surface

temperature drops to 280 K (Schmugge et al. 2002; Kim

et al. 2015).

Figure 1a, b shows the snapshot of the Level 3 Surface

Soil Moisture Product across the world and of the Korean

Peninsula used in this study, respectively.

2.3 In-situ soil-moisture data

Many of previous studies showed that point based ground

measurements can be used as a representative value of

larger areas (Vachaud et al. 1985; Brocca et al. 2009;

Wagner et al. 2008). Even if Jackson et al. (2010) men-

tioned the limitation of representativeness of ground-based

soil moisture observations for filed-mean soil moisture,

most of soil moisture dataset used in this study showed

specific data distribution such as normal and lognormal

distribution. This normality of dataset indicated that point-

scale soil moisture variability can capture the variability of

filed-mean soil moisture even the scale mismatch between

point based and satellite-based soil moisture dataset as

described in various previous research (Famiglietti et al.

1999; Choi and Jacobs 2007; Brocca et al. 2009).

In this study, we used the in situ soil moisture products

provided by the Rural Development Administration (RDA)

of the Korean Government. The RDA has been managing

the soil-moisture measurement network in the Korean

Peninsula since 2000. Each gauge in the network measures

the soil moisture contents at a soil depth of 10 cm using the

CS615 and CS616 water content reflectometers (Campbell

Scientific Inc. 1996, 2012). Due to the agricultural and

meteorological purposes of the network, all of RDA sites
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were located in cropland. Unlike other in situ soil moisture

measurements which were designed for validation of

remotely sensed data (Jackson et al. 2010), RDA sites were

not planned for the satellite-based soil moisture validation

purpose. Additionally, in contrast with satellite-based soil

moisture dataset in situ dataset provide a deeper layer of

soil moisture information (*10 cm). However, as it is

mentioned in AMSR2 dataset section 2.1, the microwave-

based soil moisture retrievals represent the near-surface

soil moisture information (1–2 cm). Numerous previous

studies indicated that soil moisture observation with

5–10 cm depth can be used for validation and estimation of

satellite-based soil moisture retrievals if the satellite-based

soil moisture dataset are corrected by utilizing the method

of normalization (Draper et al. 2009; Su et al. 2013).

In this study, we used soil moisture dataset measured

from the eight stations. The geographical characteristics of

the stations are summarized in Table 1. The locations of

Fig. 1 a The world map of soil moisture samples and the location of Korean Peninsula, b the sample soil moisture map of the Korean Peninsula

and c the locations of the in situ soil moisture observation stations and land cover classification on the Korean Peninsula
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the eight stations and land cover classification are shown in

Fig. 1c.

2.4 Normalization of the satellite soil moisture data

The soil moisture content data obtained by the satellite may

be systematically different from the data obtained using a

ground sensor because of the discrepancy of the measuring

depth and the spatial scale (Kim et al. 2015). For this

reason, satellite soil moisture data is often corrected to

match the ground soil moisture data using a normalization

technique (Draper et al. 2009; Cho et al. 2015). This study

applied the average-standard matching method to correct

the systematic bias from the satellite soil moisture data.

Equation (1) describes the method

h
0

S ¼
ri
rS

ðhS � lSÞ þ li; ð1Þ

where h0S is the normalized satellite data, hs is the original

satellite data, rs is the standard deviation of the in situ data,

li is the standard deviation of the satellite data, ls is the

average of the in situ data and is the average of satellite

data. In addition, the 5-day moving average filter was

applied to the satellite data to reduce the noise before the

normalization process. Figure 2 shows the satellite soil

moisture data before and after the normalization process.

2.5 Synthesis of ground and satellite based soil

moisture data

The CM technique (Ehret 2002; Pegram 2002; Sinclair and

Pegram 2005) is a method of spatial interpolation suited for

merging the spatially continuous grid-based measurement

(e.g. radar rainfall imagery) and the point measurement

(e.g. point rainfall measurement). The method has the

Table 1 The geographical characteristics of the eight in situ soil moisture gauges

Site Name Latitude

(�)
Longitude

(�)
Elevation

(El. m)

Annual rainfall

(mm)

Annual mean

temperature (�C)

Mean relative

humidity (%)

Land cover

Gyeongsan 35.82 128.81 58 1046.8 12.4 65.1 Crop land

Gokseong 35.27 127.30 60 1391.0 13.8 69.5 Crop land

Sunchang 35.44 127.04 253 1380.4 12.3 71.7 Mixed forest

Imsil 35.66 127.27 256 1351.9 11.2 73.3 Mixed forest

Jeonju 35.83 127.10 41 1313.1 13.3 69.4 Urban

Cheorwon 38.20 127.25 156 1347.3 11.1 71.0 Crop land

Chuncheon 37.93 127.25 79 1391.2 10.2 70.4 Urban

Hapcheon 35.55 128.11 44 1275.6 13.0 67.6 Crop land

Fig. 2 a Time series of AMSR2 satellite soil moisture data before

and after the normalization process. In-situ soil moisture data is

shown together for reference. The daily hyetograph is shown in the

plot on the top axis. b Scatter plot comparing the in situ soil moisture

data (x) and the AMSR2 satellite soil moisture data before and after

the normalization process (y)
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advantage of precisely preserving the spatial covariance

structure of the spatially continuous grid-based measure-

ment while keeping the accuracy of the point-based mea-

surement. The algorithm has been applied and showed

superior performance to the traditional geostatistical

approaches, especially in obtaining spatial rainfall fields in

several regions across the world (e.g. Sinclair and Pegram

2005; Goudenhoofdt and Delobbe 2009 for UK; Delobbe

et al. 2009 for Belgium; Kim et al. 2007 for Korea; Berndt

et al. 2014 for Germany). The method is also known as

Kriging with radar-based error correction because it is

frequently used in merging the radar-based rainfall field

and point-based rainfall data.

Figure 3 describes the processes of the conditional

merging technique applied in this study. The technique has

the following six processes: (a) Soil moisture is measured

at eight ground gauges; (b) The soil moisture values

measured at the eight ground gauges are interpolated using

the Ordinary Kriging (KR) technique; (c) Soil moisture is

measured from the satellite; (d) The satellite soil moisture

values at the eight ground gauge locations are collected and

are spatially interpolated using the KR technique; (e) The

residual between the data of (c) and the data of (d) is

calculated; (f) The residual values of (d) are added to the

data of (b) to obtain the final satellite-ground composite

soil moisture data. This study is particularly interested in

comparing the accuracy of the soil moisture map obtained

by spatially interpolating the in situ soil moisture data only

using the KR technique—Fig. 3b and the one obtained by

merging the satellite and in situ soil moisture data using the

CM technique (Fig. 3f).

2.6 Comparison of the spatial interpolation

techniques

The leave-one out cross-validation calculation was used to

compare the performance of the two spatial interpolation

techniques in predicting the soil-moisture values at the

Fig. 3 The processes of the conditional merging technique: a soil

moisture is measured at eight ground gauges; b the soil moisture

values measured at the eight ground gages are interpolated using the

Ordinary Kriging technique; c soil moisture is measured from the

satellite and is normalized according to the in situ soil moisture data;

d the satellite soil moisture values at the eight ground gauge locations

are collected and are spatially interpolated using the Ordinary Kriging

technique; e the residual between the data of c and the data of d is

calculated; f the residual values of e added to the data of b to obtain

the final satellite-ground composite soil moisture data
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ungauged locations. In the leave-one out cross-validation

technique, the in situ soil moisture measurement at a given

gauge locations is assumed to be non-existent and the

spatial interpolation technique (e.g. CM or KR) is applied

to obtain the value at the same point location. Then, the

estimated value obtained from the spatial interpolation

technique is compared to the original value. Lastly, this

process is repeated for all point measurement locations.

Figure 4 shows the scatter plot comparing the soil moisture

value observed at the ground gauge location on August 2,

2012 and the one obtained from leave-one out cross-vali-

dation based on the CM technique (triangles) and the KR

technique (circles). If the scatter of the triangles are closer

to the 1:1 line in the plot compared to scatter of the circles,

the performance of the CM technique can be considered to

be better than that of KR technique in estimating soil

moisture value at ungaged locations. This also means that

the satellite reported soil moisture information enhances

the predictability of the soil moisture values at ungauged

locations. The arrows shown in the plot shows the effect of

adding satellite reported soil moisture information using

the CM technique. The scatter of the soil moisture estimate

based on the KR method has the correlation coefficient of

-0.79 with respect to the zero-intercept least-fit regression

line. The soil moisture information derived from the

satellite observation is reflected in the soil moisture esti-

mate based on the CM method, enhancing the same cor-

relation coefficient value up to 0.79. However, this result is

valid only for the specific date analyzed in the plot (August

2, 2012). This study repeated this cross-validation process

for all 51 days of data in this study to draw more general

conclusion.

3 Result

3.1 Spatial characteristics of the satellite and in situ

soil moisture data

It is important that the satellite and in situ dataset merged

using the conditional merging technique have similar spa-

tial characteristics. Regarding this, Cho et al. (2015) pro-

vided the result of the direct comparison of the two data

sets and concluded that the correlation coefficient is, on

average, 0.31. In addition, this study is particularly inter-

ested in whether the two data sets have similar spatial

covariance structures, which can be measured by compar-

ing the variograms of the two data sets.

Figure 5 shows the daily variation of the spherical

model variogram ranges. While it can be noted that the

variogram range of both data sets are similar, especially for

the period from September through mid-October, no other

notable temporal similarity patterns of the model vari-

ogram range were identified.

Figure 6 shows the relationship between the squared

difference of the model variogram ranges and the average

rainfall on the same day. No remarkable relationship has

been identified; however, the absence of the scatter points

on the upper right side of the plot indicates that when large

amount of rainfall occurs, the model variogram range of

the in situ soil moisture value and that of the satellite soil

moisture value does not tend to be significantly different.

Table 2 summarizes the statistics of the model variogram

ranges. The average of the in situ and satellite model

variogram range was 334 and 363 km, respectively. The

average of the model variogram range difference was

54 km.

3.2 Comparison of the satellite-in situ soil moisture

composite data (conditional merging)

and the in situ only data (Ordinary Kriging)

Figure 7 shows the result of the leave-one-out cross vali-

dation for the date of (a) July 3rd, (b) August 2nd,

(c) September 1st and (d) October 1st. The scatter plot

compares the in situ soil moisture value to the satellite-

in situ composite soil moisture value obtained by applying

the CM technique (solid squares) and to the in situ only soil

moisture value obtained by applying the KR technique

(empty squares). The y coordinates of the scatter plots were

obtained from the leave-one out interpolation.

Fig. 4 Scatter plot comparing the soil moisture value observed at the

ground gauge locations on August 2, 2012 and the value obtained

from leave-one out cross-validation based on the CM (triangles) and

the KR (circles) techniques. The gray dotted arrow line indicates the

enhancement of the soil-moisture estimate by including the soil-

moisture information reported by the satellite. The length and the

direction of the arrow corresponds to the residual value explained in

Fig. 3e
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For all plots, the zero-intercept least square fit linear

regression line, the corresponding equation and the corre-

lation coefficient are shown together. The regression line

was set to pass through the origin of the coordinate system

because the overall similarity of the dataset to the 1:1 line

passing through the origin represents the perfect prediction

of the soil moisture value at ungauged location. The per-

formance of the interpolation technique can be considered

as the slope of the regression line as the correlation coef-

ficient approaches to the value of one.

For all dates analyzed in Fig. 7, the predictability of the

CM method in estimating the soil-moisture at ungauged

locations is enhanced compared to the predictability of the

KR method; the KR method has the regression line slope

and the correlation coefficient closer to the unity. Figures 9

and 10 show the daily variation of the correlation coeffi-

cients and the slopes. The correlation coefficient is greater

using the KR method in 69 % of the 51 days investigated.

However, for several days especially, during the period

from late July through early October, the KR method

showed drastically low correlation coefficients. The CM

method did not have low correlation coefficients for most

dates investigated. In addition, the difference between the

two correlation coefficients is not significant when the KR

method has a greater correlation coefficient compared to

the CM method.

The hatched area in Fig. 8 shows the degree of

improved correlation coefficients, when the CM method

outperforms the KR method. The shaded area in the plot

shows when the KR method outperforms the CM method.

The first is significantly larger than the latter. The sum of

the correlation coefficients for all 51 days when applying

the CM and the KR method are 22.6 and 12.6, respec-

tively. In Fig. 9, the slope of the regression line was

Fig. 5 Daily variation of the

spherical model variogram

range of the in situ and AMSR-2

soil moisture data

Fig. 6 Scatter plot comparing the squared residual between the

in situ and satellite model variogram ranges

Table 2 The statistics of the

model variogram range
Month Monthly average variogram range (�)

In-situ AMSR2

Spherical Exponential Gaussian Spherical Exponential Gaussian

JUL 5.6701 2.8223 2.3637 3.6255 2.7958 1.4933

AUG 2.1001 1.1078 0.9169 2.7919 1.5189 1.2512

SEP 3.2756 2.6900 1.4742 3.8615 1.8305 1.3524

OCT 2.3330 1.4068 1.2049 4.2410 2.1242 1.7227

Total 3.3447 2.0067 1.4899 3.6300 2.0673 1.4549
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greater using the CM method for 80 % the 51 days

investigated. The hatched area in the plot shows the

degree of improved regression line slope when the CM

method outperforms the KR method. The shaded area

shows time points where the KR method outperforms the

CM method. For Figs. 8 and 9, the hatched area is greater

than the shaded area, which generally means the CM

method yields more certain (greater correlation coeffi-

cient) and less biased (regression line slope closer to the

unity) soil moisture estimates at ungauged locations

compared to the KR method.

While Fig. 7 compares the cross-validation result for a

specific date, Fig. 10 compares the cross-validation results

for all dates considered in this study at individual gauges.

The result corresponding to all eight in situ gauges are

shown. Each plot shows the observed (x) versus an esti-

mated (y) soil moisture value obtained through cross val-

idation using the CM method (black solid square) and the

KR method (hollow square). The CM method outperforms

the KR method using the Gyeongsan gauge (Fig. 10a).

Conversely, the KR method outperforms the CM method at

Cheorwon (Fig. 10e) and Chuncheon (Fig. 10f) gauges.

Fig. 7 Results of the leave-one out cross-validation. The scatter of

the filled squares in the plots compares the in situ soil moisture value

(x) and the satellite-in situ composite soil moisture value, obtained by

applying the conditional merging technique to (y). The scatter of the

hollow squares in the plots compares the in situ soil moisture value

(x) and the in situ only soil moisture obtained by applying the

Ordinary Kriging technique (y)

Stoch Environ Res Risk Assess (2016) 30:2109–2126 2117

123

Author's personal copy



The performances of both methods were similar at the

remaining five gauges. This notable difference of the rel-

ative performance of the two methods is because the CM

method is affected by the accuracy of the KR estimate of

the in situ data (see Fig. 3b). In the CM method, the

satellite data adjusts the KR estimate of the in situ soil

moisture data (see Fig. 3f). Consequently, if the KR esti-

mate of the in situ soil moisture value is not accurate, the

estimate based on the CM method will be inaccurate as

well. This can be proven by the correlation coefficients of

both interpolation methods being closely related with each

other.

Both Cheorwon and Chuncheon gauges are located

further away from the remaining six gauges, which means

that the KR estimate of those two locations tend to be

inaccurate, especially for the days with low variogram

range. In addition, both Cheorwon and Chuncheon gauges

are located in mountainous areas where the difference

between the in situ and the satellite soil-moisture data is

known to be significant. This subsequently yields an

inaccurate estimate of the residual value (Fig. 3e) used by

the CM method to adjust the KR in situ soil moisture value

estimate.

The correlation coefficient and slope of the regression

analysis is provided in Fig. 10. This figure cannot thor-

oughly represent the absolute performance of the applied

interpolation technique, because each of the data point may

have a unique reason of being optimal estimate. The data

points still work as a standard to measure the general

performance of each interpolation technique.

Figure 11 shows the map of the correlation coefficients

of the regression line shown in Fig. 10 while comparing the

observed (x) versus cross-validated soil moisture value

estimates based on the (a) CM method and the (b) KR

method. For both maps, the lighter area indicates a more

optimal performance of the applied interpolation tech-

nique. The general spatial trend of both maps is similar

showing greater correlation coefficient values at the

southwestern regions of the Korean Peninsula. The corre-

lation coefficient decreased toward the north.

Figure 12 shows the map of the relative performance of

both methods measured in terms of (a) the regression line

Fig. 8 Daily variation of the

correlation coefficient of the

regression line relating the

in situ soil moisture value and

the soil moisture value obtained

by applying the leave-one-out

interpolation. The hatched area

in the plot shows the degree of

improved correlation when the

CM method outperforms the KR

method. The shaded area in the

plot shows when the KR method

outperforms the CM method

Fig. 9 Daily variation of the

slope of the regression line

relating the in situ soil moisture

value and the soil moisture

value obtained by applying the

leave-one-out interpolation. The

hatched area in the plot shows

the degree of improved

regression line slope, when the

CM method outperforms the KR

method. The shaded area in the

plot shows when the KR method

outperforms the CM method

2118 Stoch Environ Res Risk Assess (2016) 30:2109–2126

123

Author's personal copy



slope and (b) the correlation coefficient. Specifically,

Eq. (2) was used to calculate the value at each of the eight

gauges to be used for the spatial interpolation:

KR-CMa ¼ j1 � aKRj � j1 � aCMj; ð2Þ

where aCM is the slope of the zero-intercept least-square fit

regression line of the cross-validation plot using the CM

method for a given gauge; aKR is the slope of the zero-

intercept least-square fit regression line of the cross-vali-

dation plot using the KR method for a given gauge.

The first and the second term on the right hand side of

the equation, which are |1 - aKR| and |1 - aCM|, represent

the closeness of the slope of the regression line of each

interpolation method to the unity. The difference of

|1 - aKR| - |1 - aCM| or KR-CMa calculates which

method has the slope of the regression line closer to the

Fig. 10 In-situ soil-moisture value (x) versus the soil moisture value obtained from leave-one-out interpolation for all dates considered in this

study at individual gauges
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unity. The positive value means that the CM method has

the regression line closer to the unity compared to the

Kriging method and vice versa.

For example, the cross-validation plot of Fig. 10a has

the two zero-intercept regression lines for the KR method

and the CM method, which has the slope of 0.65 and 0.98,

respectively. According to Eq. (2), KR-CMa has the

positive value of 0.33 which means that the CM method

has the regression line closer to the unity compared to the

Kriging method. Therefore, when the map value increases,

the predictability of the CM method increases at the cor-

responding location. Conversely, when the map value

decreases, the predictability of the KR method increases.

Figure 12b was produced using a similar value based on

Fig. 11 The map of the correlation coefficient of the regression analysis comparing the observed (x) versus cross-validated soil moisture value

estimates based on the a CM method and the b KR method

Fig. 12 Maps of the differences between the slope of the regression line (a) and correlation coefficient (b). Bright colors mean CM showed

increased predictability compared to the Kriging method, and dark colors mean the opposite
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the correlation coefficient of the regression analysis.

Specifically, Eq. (3) was used:

KR-CMr ¼ j1 � rKRj � j1 � rCMj; ð3Þ

where rCM is the correlation coefficient of the zero-inter-

cept least-square fit regression line of the cross-validation

plot using the CM method for a given gauge; rKR is the

correlation coefficient of the zero-intercept least-square fit

regression line of the cross-validation plot using the CM

method for a given gauge.

The CM method outperforms the KR method at eastern

part of the Korean Peninsula in terms of the regression line

slope. The opposite is true for the western part of the

Korean Peninsula. The spatial trend of the relative per-

formance in terms of correlation coefficient was different

from the one based on the regression line slope. The CM

method outperforms the KR method in the southern part of

the Korean Peninsula. The opposite is true for the northern

part of the study area.

4 Discussion

4.1 Influence of the rainfall on the relative

performance of the interpolation methods

As soil moisture is directly influenced by rainfall, the rel-

ative performance of the two interpolation methods is

expected to be influenced by the amount of rainfall. Fig-

ure 13 shows the daily variation of the number of the

gauges where the CM method outperformed the KR

method. At these gauges, the residual between the CM-

method-based soil moisture value and the observed soil

moisture value was lower than the residual between the

KR-method-based soil moisture value and the observed soil

moisture value. The bars on the top side of Fig. 13 show

the average areal daily rainfall in the study area. The

amount of this areal daily rainfall is shown in the right axis

of the plot. During the rainy season (July through

September), the number of the gauges at which CM method

outperforms the KR method decreases when the rainfall

occurs (period specified by the red arrow). Conversely, the

number of the gauges at which CM method outperforms

the Kriging method increases when no rainfall occurs

(period specified by the blue line). This contrast is caused

by the spatial correlation of the in situ soil moisture value

increasing when a large amount of rainfall occurs. In other

words, the soil moisture value at different in situ gauges is

similar with each other. This allows the KR method to use

the information from nearby gages to estimate the soil

moisture value.

Conversely, when there is little rainfall, the soil moisture

values at different gauges are completely different. Then,

the KR method cannot use information as many as the date

with large rainfall. Instead, the CM method, which can use

the data from the satellite to overcome this low spatial

correlation of the in situ gage measurements. The reason

why the CM method, which takes advantage of soil

moisture information from both satellite and in situ mea-

surement, is not always better than the KR method is

because the satellite measurements have low accuracy. To

support this argument, the spatial correlation of the in situ

soil moisture value should increase as the average areal

rainfall across the study area increases. Figure 14 shows

the relationship between the average rainfall across the

study area (x) and the variogram range of the in situ soil

moisture value (y). By the definition of the variogram

range, a soil moisture value from one in situ gauge does not

Fig. 13 Daily variation of the

number of the gauges where the

CM method outperformed the

Kriging method. At these

gauges, the residual between the

CM-based soil moisture value

and the observed soil moisture

value was lower than the

residual between the Kriging-

based soil moisture value and

the observed soil moisture

value. On the top side of Fig. 14

(right axis) shows the average

areal daily rainfall in the study

area
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affect the soil-moisture value of another area located fur-

ther than the variogram range shown in the plot. The var-

iogram range generally increases with precipitation

increase, while variation is significant when there is little

rainfall. This implies the spatial correlation of in situ soil

moisture value varies when there is little rainfall, but it

tends to be high when a large amount of rainfall occurs

across the study area. This eventually increases the pre-

dictability of the KR method.

4.2 Influence of the gage density

Both the KR method and the CM method are based on the

KR interpolation technique, and the performance of the KR

interpolation technique are influenced by the spatial density

of the observations (Hofstra et al. 2010). The area with

greater observation density has increased accurate variable

estimates because more information can be obtained from

nearby observations. To find out whether the spatial density

of the in situ soil moisture observation influences the rel-

ative performance of the two methods applied in this study,

we compared the spatial density of the in situ soil moisture

gauges and the relative performance of the in situ Kriging

and the CM methods. Here, the spatial density of the in situ

gauges were obtained by the Kernel density method (Sil-

verman 1986). Figure 15 shows the Kernel density field of

the study area along with the grid setting designed for the

comparison. The grid cell shown in Fig. 15 overlapped

with Fig. 12a, b to obtain the grid cell values from the

corresponding maps.

Figure 16 shows the result of the comparison. Fig-

ure 16a compares the Kernel density of in situ gauge

(x) and the relative performance of the KR and the CM

method in terms of the slope of the regression line (y). The

y value of the scatter in the plot was calculated using

Eq. (2). The positive y-value means that the CM method

performs better than the Kriging method at the corre-

sponding grid cell location in terms of regression line

slope. Even though the variability of the scatter is high, the

relative performance of the CM method generally decrea-

ses as the gauge density increases (shown by the black

solid line; the moving average of the scatter in the plot).

Figure 16b shows the same plot with the variation of the

relative performance of the CM method and the Kriging

method in terms of the correlation coefficient. The y value

of the scatter in the plot was calculated using Eq. (3). Note

that the y-values of the scatter are mostly below 0, meaning

that the correlation coefficient of the Kriging method is

greater than that of the CM method at most of the grid cell

locations in the study area. Note that as the gauge density

increases, the relative performance of the CM method, in

terms of correlation coefficient, increases.

These findings lead to the conclusion that as the gauge

density decreases, the CM method tends to yield a less-

biased estimate of the soil moisture value with greater

uncertainty, compared to the Kriging method. This is

because as the gauge density decreases or there are not

sufficient nearby gages, the soil-moisture information that

the Kriging method can use decreases yielding biased

estimate. However, the CM method still can use the

satellite-derived soil moisture information, even when

there are no nearby in situ gauges.

4.3 Influence of terrain and land use

The accuracy of the AMSR2 soil moisture product is

influenced by terrain and land use (Yuan et al. 2015).

Therefore, the relative performance of the two

Fig. 15 The Kernel density field of the study area along with the

location of the in situ soil moisture gauges

Fig. 14 The relationship between the average rainfall across the

study area and the variogram range of the in situ soil moisture values
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interpolation methods applied in this study can be influ-

enced by terrain and land use. Figure 17 compares the

relative performances of the interpolation methods varying

with altitude. Here, the Normalized Difference Vegetation

Index (NDVI) is considered as the explanatory variable

along with altitude; however, it has a very high positive

correlation with altitude. Therefore, only the analysis based

on altitude is presented in this study. In addition, the Kernel

density of the in situ gauges investigated in Sect. 4.2 does

not have notable correlation with altitude. The same grid

setting shown in Fig. 15 was used for comparison.

The y value of the scatter in both plots in Fig. 17 is the

relative performance of the KR and CM method in terms of

regression line slope (Eq. 2) and correlation coefficient

(Eq. 3). Figure 17a shows the relative performance of the

two interpolation methods in terms of regression line slope.

As the altitude increases, the CM method performance

increases when compared to the Kriging method.

Figure 17b shows the relative performance of the two

interpolation methods in terms of correlation coefficient.

The y value of the scatter was calculated using Eq. (3).

While the Kriging method shows improved performance

compared to the CM method as altitude increases, the

degree of improvement was not as dramatic as that of the

comparison based on the regression line slope.

These findings lead to the conclusion that the CM

method yields a less biased but more uncertain estimate

of soil moisture value compared to the Kriging method as

the altitude of the area increases. As the altitude of the

area increases, the spatial correlation of the in situ soil

moisture value decreases (Western et al. 1999), this yields

little information for interpolation for the KR method. On

the contrary, the CM method uses the soil-moisture

information derived from satellite for the area where even

in situ data cannot provide information due to low spatial

correlation, which is the reason why the CM method

Fig. 16 The relationship between the gauge Kernel density and the relative performances of the KR method and the CM method, measured in

terms of the a regression line slope and the b correlation coefficient

Fig. 17 The relationship between the altitude and the relative

performance of the KR method and the CM method measured in

terms of a the regression line slope and b the correlation coefficient.

The y-value of the scatter in plot a and plot b was calculated using

Eqs. (2) and (3), respectively

Stoch Environ Res Risk Assess (2016) 30:2109–2126 2123

123

Author's personal copy



shows improved performance in terms of regression line

slope.

5 Conclusion

This study investigated the applicability of the conditional

merging (CM) spatial interpolation technique to obtain the

AMSR2-satellite-in situ composite soil moisture value in

Korean Peninsula. The performance of the composite

product was compared to the soil moisture value obtained

by spatially interpolating the in situ soil moisture data

measured at eight gauge locations using the KR technique.

The leave-one out cross-validation technique was used to

estimate both methods’ ability to estimate soil moisture

values at ungauged locations.

We conclude the performance of the KR method is

highly influenced by the spatial correlation of the in situ

soil moisture content. When the spatial correlation of the

in situ data is high, the KR method can use the soil

moisture information from many nearby gauges, yielding a

more accurate soil moisture estimate. Conversely, when the

spatial correlation of the in situ data is low, the CM method

is likely to outperform the KR method because the CM

method overcomes this issue by taking advantage of the

satellite-soil moisture measurement. This case includes

when there is little rainfall and where the altitude of the

area is high (mountainous area). However, the CM method

does not always outperform the KR method, even if there is

low spatial correlation. This is because the satellite mea-

surement is not always accurate.

We further conclude that the CM method outperforms

the KR method for locations with low gauge density (areas

further away from in situ gauges). This is due to the

accuracy of the KR method increasing as in situ gauge

density increases.
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