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Abstract This study is the first assessment of the effects of soil moisture on dust outbreaks using
satellite-derived aerosol optical depth (AOD) and global assimilation data on the sand regions across East
Asia. The relationships among dust outbreaks, soil moisture, and wind speed were estimated using data
sets of the Moderate Resolution Imaging Spectroradiometer and Global Land Data Assimilation System
collected over 11 years (2003–2013). The mean AOD exponentially decreased with increasing soil moisture
under different wind speed conditions (average determination coefficient = 0.95). As the wind speed
conditions became stronger, the probability of a dust outbreak became greatly affected by soil moisture.
The threshold soil moisture for dust outbreaks increased with increasing wind speed and decreased with
increasing dust-outbreak criteria of AOD. Our results have the capability to be applied to satellite-based
dust-outbreak prediction and global-scale dust-emission studies.

1. Introduction

Sand dust has direct implications for public health, transportation, and agriculture, with indirect effects on
climate through modification of the microphysical properties of clouds [Zhang and Carmichael, 1999; Kwon
et al., 2002; Tegen, 2003; Bangert et al., 2012]. In addition, it is considered one of the major sources of the
tropospheric aerosol component, which plays an important role in climate systems and affects the atmospheric
radiation budget by scattering and absorbing longwave and shortwave radiation [Sokolik and Toon, 1996;
Tegen et al., 1996; Kaufman et al., 2002; Myhre et al., 2003].

Surface wind speed has generally been regarded as themain factor determining themobilization of sand and
dust in dust-source regions [Chomette et al., 1999]. However, dust events are influenced not only by wind
speed but also by surface conditions [Ravi et al., 2004; Natsagdorj et al., 2003;Wang et al., 2004; Ishizuka et al.,
2005; Tegen et al., 2004; Cowie et al., 2013]. Surface conditions such as soil moisture determine the threshold
friction velocity for a dust outbreak on bare soil, except in conditions of extreme cold or in the presence
of coarse soil particles, because soil moisture increases the cohesive forces between soil particles; therefore,
moistened sand requires higher wind speed to generate a dust event, especially under humid conditions.

Many efforts have been made in laboratories and observatories to elucidate the mechanisms of dust
emissions from moistened sand [Gillette et al., 1982; Fécan et al., 1999; Dong et al., 2002; Ravi and
D’Odorico, 2005]. However, such research has limited application for estimating the relationship between
soil moisture on a global scale, and for natural dust events. To understand the mechanisms linking dust
events and soil moisture trends on a global scale, employment of satellite-based and global assimilation
data would be required.

With the development of satellite remote sensing and data-assimilating techniques, application to several
hydrological research fields has been achieved [Crow and Ryu, 2009; Kerr et al., 2010; Chen et al., 2013]. In dust
research, satellite remote sensing has provided a powerful tool for characterization of global dust properties,
and the aerosol product data obtained provide more objective and quantitative measurement criteria than
visibility inspection by the human eye [Sokolik, 2002; Prospero et al., 2002; Schepanski et al., 2007; Baddock
et al., 2009; Parajuli et al., 2014]. Moreover, data-assimilating techniques (i.e., Global Land Data Assimilation
System (GLDAS)) allow assessment of global land surface conditions through integration of satellite- and
ground-based data and use of several land surface models.

In the present study, satellite-derived aerosol products and global assimilation data were linked to estimate the
effect of soil moisture on dust phenomena over sand areas in East Asia. Through this analysis, the following
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were characterized: (1) the relationships among volumetric soil moisture (0–10 cm), wind speed, and aerosol
optical depth; (2) dust-outbreak possibilities and threshold soil moisture; and (3) the effect of soil moisture on
dust outbreaks and threshold wind speed.

2. Data Sets
2.1. Aerosol Products

The Moderate Resolution Imaging Spectroradiometer (MODIS) sensors aboard the Earth Observing System
Terra and Aqua polar orbiter platforms are specially designed to analyze atmospheric (i.e., cloud and aerosol)
and land properties (i.e., surface reflectance and evapotranspiration) with reliable accuracy. MODIS deep blue
550nm aerosol optical depth (AOD) data were selected for this study because these data have already been
extensively validated by several researchers in field studies. Moreover, deep blue data maintain accuracy
even over bright desert surfaces, whereas other satellite-based algorithms have difficulty obtaining accurate
reading [Ginoux et al., 2012]. For details about the Deep Blue algorithm, please refer to Hsu et al. [2004].
Level 2 MODIS deep blue AOD (Aqua) products reported daily at noon at a spatial resolution of 0.01° × 0.01°
are available for 2003 to the present. Herein, the level 2 AOD data were resampled to a spatial resolution
of 0.25° × 0.25° to match the resolution of the Global Land Data Assimilation System (GLDAS).

2.2. Land Surface Products

GLDAS has used several satellites (i.e., NOAA, Terra, and Tropical Rainfall Measuring Mission), and ground-based
data set (i.e., Climate Prediction Center Merged Analysis of Precipitation, National Centers for Environmental
Prediction, and National Center for Atmospheric Research) in order to characterize the state of the land surface
[Rodell et al., 2004; Sheffield et al., 2006]. GLDAS products have been widely analyzed at a spatial resolution
from 0.25°× 0.25° to 1° × 1° [Chen et al., 2013]. In particular, GLDAS products are commonly used as reference
values for validation of satellite-retrieved soil moisture contents [Dorigo et al., 2010]. GLDAS/Noah products
reported every 3 h at a spatial resolution of 0.25° × 0.25° are available for 2000 to the present. In the analyses,
wind speed (WS) at 10.0m height, volumetric soil moisture (VSM), and soil temperature at a depth of 0–10.0 cm,
and rainfall rate from GLDAS data were employed, with times proximate to MODIS AOD retrieval.

2.3. Land Properties

The Harmonized World Soil Database (HWSD) is a raster database at a spatial resolution of 1 km with more
than 16,000 different soil texture mapping units. It combines existing regional and national updates on soil
information, with a 1:5,000,000 scale Food and Agriculture Organization-United Nations Educational, Scientific
and Cultural Organization Soil Map of theWorld. The HWSD consists of 221million grid cells covering the globe’s
land territory, and it has been used in the identification of dust sources, as well as for and applied in many
other research fields [e.g., Saxton and Rawls, 2006; Batjes, 2009; FAO/IIASA/ISRIC/ISS-CAS/JRC, 2009].

3. Methodology

In this study, sand areas were defined using the U.S. Department of Agriculture (USDA) topsoil texture
classifications from the HWSD data sets. Figure 1 shows the spatial distribution of the East Asian sand
fraction. Sand fraction pixels indicating a sand fraction of more than 80% were classified as sand areas.
These include many famous bare deserts in East Asia already known to bemajor dust-source regions [Wang
et al., 2004; Sun et al., 2001].

To allow accurate analysis of the effects of soil moisture on dust outbreaks, several specific conditions were
excluded. First, pixels below 0°C were masked for occurrence of frost- and snow-covered sand areas. Second,
days on which precipitation occurred were excluded to avoid use of instantaneous AOD data detected just
before and after rainfall events. Third, the fine mode aerosol caused by transported dust or biomass burning
was eliminated using the threshold of an Angström Exponent larger than 0.35 [Eck et al., 1999; Parajuli et al.,
2014]. With these exclusions in place, we assembled 11 years of AOD, VSM, andWS data, each with 0.25° × 0.25°
grid cells over the East Asian sand areas from the MODIS and GLDAS data. From the East Asian sand areas
(6790pixels), a total of 27.261 million data points were employed in the analysis.

To allow simultaneous consideration of various VSM and WS conditions, we divided the VSM range at 1.0%
intervals and WS at 1.0ms�1 intervals. Through this combination (375C2), 375 groups of ranged VSM (5.0 to less
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than 30.0%) and ranged WS (0.0 to less than 15.0ms�1) were obtained. The general VSM values ranged from
5.0% to 26.0% over the East Asian sand regions during the 11 years of the study period.

4. Results and Discussion
4.1. Strong Wind Speed and AOD

Figure 2 shows the monthly variation of the total number of AOD at 0.5 interval and the total number of strong
wind speed occurrences during 11 years. Strong wind speed is commonly used in dust research to explain dust
outbreaks [Kurosaki and Mikami, 2003]. To estimate the relationship between strong wind speed and AOD, a
specific AOD value was designed as the dust-outbreak state using criteria from the previous research of Park

Figure 2. Variation of total number of strong wind speed (≥6.5 ms�1), AOD≥ 1.0, AOD≥ 1.5, and AOD≥2:0 occurrences in
different months for 11 years over the East Asian sand regions.

Figure 1. Sand fraction over East Asia, based on Harmonized World Soil Database (HWSD). Most areas have more than 80%
sand fraction (#1 to #6, 6790 pixels total), classified as sand by the USDA classification. Areas #1 to #8 showwell-known dust
sources in East Asia.
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et al. [2014]. According to Park et al. [2014], AOD values from 1.0 to 3.0 represent the dust-outbreak state. Strong
wind speeds and AOD values higher than 1.0, 1.5, and 2.0 were found to have high correlation coefficient values
of 0.76, 0.80, and 0.83, respectively. This suggested that high AODrange (AODrange represents an AOD higher
than a specific range) could be used as a reasonable criterion for defining dust outbreaks. These results supported
the findings of Kurosaki and Mikami [2003], which showed the tendency of correlation between strong wind
speed and dust outbreak frequency. This indicates that the linking of satellite-based data with assimilation data
can be employed for diverse dust-related research on a regional scale.

4.2. Relationships Among AOD, Soil Moisture, and Wind Speed

Figure 3 represents an AOD under a condition grid cell with VSM ranging from i to (i+1) (%), and WS from j to
( j+1)ms�1 along the bottom of the x axis (SiWj). For statistical analysis, the SiWj groups for which less than
25 samples were available were rejected. For example, S9W5 denotes a condition grid cell with a VSM of 9.0 to
10.0% and a WS of 5.0 to 6.0ms�1. To give a better understanding, the SiW3 x axis zone shows WS fixed at 3.0 to
4.0ms�1 (upper x axis) with VSM ranging from 5.0 to 30.0% (lower x axis). Without considering the effect of soil
moisture, themean AOD climbed steadily with increasingWS (black solid line and upper x axis). However, when
the effect of soil moisture was applied to the relationship between AOD and WS, the mean AOD under SiWj

condition AODmeanjSiWj

� �
varied significantly with soil moisture in different WS conditions (black dots, lower

x axis). As expected, most AODmeanjSiWj
showed a decreasing pattern with increasing soil moisture. In order to

lift the sand particles containing higher moistures, stronger wind speed is required to overcome the cohesive
strength between soil particles.

4.3. Exponential Relationship Between AOD and Soil Moisture

Further investigation into the AOD, VSM, and WS relationships is depicted in Figure 4. An exponential
decrease of AODmeanjSiWj

was observed with increasing soil moisture under different WS conditions. This

relationship can be explained by equation (1).

AODmeanjSiWj
¼ C1 � exp �C2 � VSMð Þ (1)

Each AODmeanjSiWj
regression function had a high R2 value (0.83 to 0.98), low root-mean-square error value

(0.23 to 0.02), and low sum of squared errors value (0.01 to 0.48) (Figure 4). The constants C1 and C2 varied
with WS conditions. Equation (1) and Figure 4 illustrate that given a fixed VSM, the variation of AODmeanjSiWj

increased as WS became stronger. In fixed WS conditions (fixed C1 and C2), however, the variation of
AODmeanjSiWj

decreased as VSM increased. Higher AODmeanjSiWj
variation is therefore associated with higher

WS and lower VSM. However, under wet conditions (VSM larger than about 16%), the AODmeanjSiWj
values

were barely affected by WS conditions.

Figure 3. The relationships among AOD,WS, and VSM. Yaxis showsAOD values under different SiWj conditions. Black dots indicatemeanAOD value under SiWj conditions.
The gray line for each dot indicates standard deviation. Black triangles represent averaged AOD values under different wind speed conditions (upper x axis).
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Figure 4. The relationship of averaged AOD and VSM under different wind speed conditions. The upper part of the graph
indicates stronger wind speed conditions. Constants (C1 and C2) and statistical information for each line are included.

Figure 5. (a–c) Each bar graph shows the total number of SiWj over East Asian sand areas from 2003 to 2013. Gray bars indicate the total number of specific ranged-AOD
occurrences under SiWj conditions NAODrange

� �
. The bar height indicates the total number of SiWj conditions NalljSiWj

� �
. The black line graph shows the specific range of

AOD occurrence probability given a particular SiWj condition.
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4.4. Statistically Estimated Dust Event Probability and Soil Moisture Threshold

In Figure 5, the height of the bar indicates the total number of SiWj conditions NalljSiWj

� �
, while the height of

the gray bar indicates the total number of occurrences of AODrange within the SiWj conditions (NAOD range)
over the East Asian sand areas from 2003 to 2013. The black line indicates the AODrange probability for a sand
area under SiWj condition, calculated using equation (2).

PAODrange jSiWj
¼ NAODrange=NalljSiWj

�100 %ð Þ (2)

This method was suitable because the satellite data had coarse temporal resolution characteristics. This
statistical procedure was also used in previous studies [e.g., Kurosaki et al., 2011]. In Figure 5a, under SiW5

condition, VSM and the dust-outbreak probability are denoted when the dust-outbreak criterion is 1.5 AOD.
In lower WS conditions (Figure 5a, SiW5), little change of the dust-outbreak probability was observed with
variation of VSM. In this condition, the dust-outbreak probability standard deviation (DPSD) value was only
about 2.8%. In a higher wind speed condition (Figure 5b, SiW9), the DPSD value of 11.6% was observed
(Table 1). The DPSD results indicated that dust-outbreak probabilities are highly affected by wind speed and
soil moisture conditions. Moreover, the threshold VSM for the dust-emission value was determined using
the concept of the most favorable state for dust outbreak from Kurosaki and Mikami [2007]. The threshold
VSM for dust outbreak represents the maximum value of VSM at which a dust outbreak can occur. The
threshold VSM may have significant application for global-scale dust-outbreak prediction and sediment
transport functions [Dong et al., 2002]. The threshold VSM for dust outbreaks (tS5 %) increased with WS
(Table 1). This result was similar to those of several previous studies [e.g., Fécan et al., 1999; Ishizuka et al.,
2005], but the present research expanded the scale from the laboratory or observatory to examination of
the natural state of an area. Figures 5b and 5c applied the same SiWj conditions; however, in Figure 5c the
dust-outbreak criterion decreased from 1.5 to 1.0 AOD. Therefore, the DPSD value increased from 11.6 to
22.0%, and tS5 % increased from 13.3 to 16.5% (Table 1 and Figure 5). The physical reasoning for the increased
tS5 % is that higher soil moisture content is required in order to increase the capillary forces between soil
particles to prevent emission from the source area for less dusty conditions under the same WS condition.
Moreover, this result illustrates how, like recording dust outbreaks by human eye judgment, different choices
in setting the criterion of a dust outbreak (AOD value) can lead to seriously differences in the dust-outbreak
threshold WS and VSM values. This discrepancy is one of the main explanations for the differing threshold
results between studies [Engelstaedter et al., 2003].

5. Conclusion

Using 11 years of satellite-based data and global assimilation data sets, the effect of soil moisture on dust
outbreaks was examined. Previous research depended on laboratory- and observatory-scale data, which
have limited value when considering the effects of soil moisture in dust outbreaks on a global scale. Thanks to
the development of satellite remote sensing and data-assimilating technology, we were able to consider
global-scale soil moisture data for evaluation of dust outbreaks. The following observations were made:

1. We found a positive correlation between strong wind speed (≥6.5ms�1) and high AODrange frequency,
which we took to indicate a state of dust outbreak.

2. The East Asian sand areaAODmeanjSiWj
and soil moisture showed a negative exponential relationship under

different wind speed conditions. A higher AODmeanjSjWi
variation rate was associated with higher wind

speeds and lower soil moisture contents.

Table 1. DPSDa and tS5%
b Under Different SiWj Conditions With the Dust Outbreak Criterion of 1.5 AOD

SiWj

SiW3 SiW4 SiW5 SiW6 SiW7 SiW8 SiW9 SiW10 SiW11 SiW12

DPSD (%) 1.5 2.1 2.8 3.9 5.5 8.2 11.6 16.9 19.1 25.5
tS5% (%) 11.1 11.6 11.7 11.9 12.0 13.2 13.3 13.4 15.4 18.0

aThe dust-outbreak probability standard deviation.
bThe threshold of VSM for a dust outbreak (GLDAS 0–10 cm volumetric soil moisture).
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3. Soil moisture had little effect on the dust-outbreak probability under lowwind speed conditions. In contrast,
it highly affected the dust-outbreak probability under stronger wind speed conditions.

4. The threshold soil moisture for dust outbreak (tS5 %) increased with increasing wind speed.
5. The threshold value for dust outbreak showed considerable variation with different values for the criterion

of dust outbreak.

This first attempt to derive the dust-outbreak possibilities and threshold soil moisture using satellite-based
and assimilation data (0.25° × 0.25° pixel scale) demonstrated the potential of determining the effects
of soil moisture on dust phenomena beyond laboratory- and observatory-scale analyses. However, the
current results are only valid for bare sand areas. Therefore, the soil moisture variation for other types of soil
(e.g., silt and clay) and vegetation dynamics (e.g., normalized difference vegetation index) needs to be
considered in future research.
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